

4 BANDS-8 TUBES BUILT-IN SPEAKER

Only

less crystal

HOWARD DOES IT AGAIN!

Models to Suit the Individual Tastes of the Most Exacting Amateur and Professional

MODEL 450-A

450A

12 Tubes - 6 Bands - Frequency Coverage .54 to 65 MC . . . Ceramic Coil Forms . . . Dual I. F. Channels . . . Two S. L. F. Ceramic Insulated Tuning Condensers . . . 47 inches of electric bandspread . . . crystal filter . . . Calibrated 'R' Meter . . . Accurately calibrated direct reading dial. Price, with Tubes, less Speaker, less crystal \$87.50 Net

MODEL 430

6 Tubes - 4 Bands - Frequency Coverage .54 to 40 MC . . . Ceramic Coil forms . . . B. F. O. with pitch control . . . Iron Core I. F. transformers . . Electric band spread . . . Built-in Dynamic Speaker . . . Headphone jack Accurate direct reading straight line dial . . . Price, Complete with tubes and speaker

\$29.95 Net

MODEL 440

9 Tubes - 5 Bands - Continuous coverage 54 MC to 43 MC . . . with pitch control, calibrated 'R' Ceramic Coil forms, S. L. F. Ceramic Meter, Crystal Filter. Price with tubes Insulated Tuning Condensers, Elec-

tric Bandspread, R. F. on all bands, Iron Core I. F. transformer, B. F. O. with pitch control, calibrated 'R' less Speaker, less Crystal ... \$66.50 WITH the advent of the world famous 430 many have asked for a larger receiver-here it is. Model 438 embodies professional features never before associated with equipment in this price class . . . real "DX" with R-9 reception: Ceramic Coil Forms . . . R.F. Stage on all Bands . . Separate Coils for each Band . Xtal Filter Complete Coverage 540 KC-43 mc ... Electric Band Spread with vernier control . . . 2-stage Iron Core I.F. . . . Accurately Calibrated Slide Rule Dial . . . 8 Tubes . . . Provisions for a 6-volt Power Supply. Band in use Indicator . . . B.F.O. with Pitch Control . . . 2 Watts Power Output ... Built-in 6" Dynamic Speaker . Head Phone Jack . . . Doublet or Marconi Antennae Connections . Provision for External Speaker Provisions for Howard tube type 'R' Meter.

HOWARD RADIO COMPANY 1731-35 West Belmont Ave., Chicago, III.
Please send me more information on
Model 438Model 430
Model 450-AModel 440
CABLE ADDRESS: "Howardco"
Name
Address
CityState

amenica's Oldest Radion Manufacturer

J. E. SMITH, President NATIONAL RADIO INSTITUTE

Established 25 years has directed the training of more men for Radio Industry than anyone else.


Broadcasting Stations

Employ managers, engineers, operators, installa-tion and maintenance men for fascinating jobs and pay up to \$5,000 a year.

Repairing Radio Sets

Spare time set repair work pays many \$5, \$10. \$15 a week extra while learning. Full time servicing pays as much as \$30, \$50, \$75 a week.

Loud Speaker Systems

Building, installing, servicing and operating pub-lic address systems is another growing field for men well trained in Radio.

Lesson on Radio Servicing Tips FREE

The prove my Training gives practical, money-making information, is easy to understand—just what you need to master Radio. My sample lesson text, "Radio Receiver Troubles—Their Cause and Remedy" covers a long list of Radio receiver troubles in A.C., D.C., battery, universal, auto. T.R.F., superheterodyne, all-wave, and other types of sets. A cross reference gives you the probable cause and a quick way to locate and remedy these set troubles. A specula section is devoted to receiver check-up, alignment, balancing, neutralizing and testing. You can get this lesson Free. No obligation.

MAIL COUPON NOW

I will send you a Lesson Free to show how I train you at home in spare time

Clip the coupon and mail it. I will prove I can train you at home in your spare time to be a RADIO EXPERT. I will send you my first lesson FREE. Examine it, read it, see how easy it is to understand—how practical I make learning Radio at home. Men without Radio or electrical knowledge become Radio Experts, earn more money than ever as a result of my Training.

Get Ready Now for Jobs Like These

Get Ready Now for Jobs Like These
Radio broadcasting stations employ engineers. operators, station managers and pay well for trained men. Fixing Radio sets in spare time pays many \$200 to \$500 a year—full time jobs with Radio Jobbers. manufacturers and dealers as much as \$30, \$50, \$75 a week. Many Radio Experts open full or part time Radio sales and repair businesses. Radio manufacturers and jobbers employ testers, inspectors, foremen, engineers, servicemen, in good-pay jobs with opportunities for advancement. Automobile, police, aviation, commercial Radio, loud speaker systems are newer fields offering good opportunities now and for the future. Television promises to open many good jobs soon. Men I trained have good jobs in these branches of Radio. Read how they got their jobs. Mail coupon.

Why Many Radio Experts Make \$30, \$50, \$75 a Week

Sou, Sou, Sou Week
Radio is young-yet it's one of our large industries. More than 28,000,000 homes have one or more Radios. There are more Radios than telephones. Every year millions of Italios get out of date and are replaced. Millions more need new tubes, repairs, Over \$50,000,000 are spent every year for Itadio repairs alone. Over 5,000,000 auto Radios are in use; more are being sold every day, offering more profitmisking opportunities for Radio experts. And RADIO IS STILL YOUNG. GROWING, expanding into new fields. The few hundred \$30, \$50, \$75 a week jobs of 20 years ago have grown to thousands. Yes. Radio offers opportunities.—now and for the future!

Many Make 55, 510, 515 a Week Extra in Spare Time While Learning

The day you enroll, in addition to our regular Course, I start sending Extra Money Job Sheets, show you how to do Radio repair jobs. Throughout your training I send plans and directions that made good spare time money—\$200 to \$500—for hundreds, while learning. I send you special Radio equipment—to conduct experiments, build circuits. This 30-30 method of training makes learning at home easy, fascinating, practical.

I Also Give You This Professional Servicing Instrument

Here is the instrument every Radio expert needs and wants—an All-Wave. All-Purpose. Set Servicing Instrument. It contains every-thing necessary to measure A.C. and D.C. voltages and current; to test tubes, resistance; adjust and align any set, old or new. It satisfies your needs for professional servicing after you graduate—can help you make extra money fixing sets while training.

You Are Trained for Television Also

With N.R.I. you take up Television principles right along with Radio principles—the correct method—since Television receivers combine both sight and sound. You also get more than ten text-books devoted entirely to

The Tested Way to BETTER PAY

Get Sample Lesson and 64 Page Book Mail Coupon

Act Today. Mail the coupon now for sample lesson and 64-page book. They're free to any fellow over 16 years old. They point out Radio's spare time and full time opportunities and those coming in Television; tell about my training in Radio and Television; show you letters from men I trained. telling what they are doing and earning. Find out what Radio offers YOU! MAIL COUPON in an envelope, or paste on a postcard—NOW!

J. E. Smith, President Dept. 9CB3 National Radio Institute Washington, D. C.

HERE'S PROOF

\$10 a Week in Spare Time

'My work has consisted of ltadio set servicing, with some Public work—all

Address Systems work—all in my spare time. My earn-ings in Radio amount to about \$10 a week."—WIL-LIAM MEYER, 705 Ridge Road, Hobart, Ind.

Earnings Tripled by N. R. I. Training

Training.

"I have been doing nicely, thanks to N.R.I.

Training. My present earnings are about three times what they were before I took the Course. I consider N.R.I.

Training the finest in the world."—BERNAID COSTA. 932 Manhattan Ave.,

Brooklyn, N. Y.

good for free sample lesson BOOK on RADIO'S OPPORTUNITIES

J. E. SMITH. President National Radio Institute, Dept. 9CB3 Washington, D. C.

Dear Mr. Smith: Without obligation send me free the Sample Lesson and your 64-Page Book "Rich Rewards in Radio." teiling about spare time and full time Radio opportunities, and how I can train for them at home in spare time. (Please write plainly)

Name		 	 									 						A	co		 		
Addr	ess	 	 		-	 					 									 		٠.	
City		 	 . in									 	. 5	ta	te	3		 			 		

RADIO & TELEVISION

The Popular Radio Magazine

MARCH — 1939 Vol. IX No. 11 HUGO GERNSBACK, Editor
H. WINFIELD SECOR, Manag. Editor
ROBERT EICHBERG, Assoc. Editor

FLASH!

Electronics Television Course

See page 656

In This Issue

GENERAL FEATURES		INSTRUCTION					
Editorial—Sun's Effect on the Propagati		Building the "Ham" Beginner's Transmitter— C. W. Palmer, E.E	659				
Television Prepares for Debut	646	Radio Kinks	. : . 661				
Static-Free Radio Invented by Armstrong.	647	A Radio Ore-Locator—Charles E. Chapel.					
World-Wide Radio Digest	648	An Inexpensive Mike					
Radio Test-Quiz-Robert Eichberg	650	The "Switched-Coil 4" Superhet-Raymond P. Adams					
How "Voder" Creates Human Speech	651	One-Meter Receiver—N. G. Haas and C. A. Erbacher 672					
International Radio Review		A Frequency Meter for the "Ham"-					
The Martian Flash, H. Gernsback	657	Herman Yellin, W2AJL	674				
CONDENSED FEATURES	New Television Projecti	on Tubes678					
Eiffel Tower Television Station	Curing Television Ills. Electronics Television C Henry Townsend New Tubes for Televisi	656 656	i				
Loud Speaker Design		An All-Around Multi-Meter	for Am				

New Tubes for Projection Television

Radio Test-Quiz
Television Course
Getting Started in Amateur Radio-
C. W. Palmer, E.E. 659
The Radio Beginner—Lesson No. 5—
Martin Clifford, W2CDV660
Question Box

TELEVISION

INSTRUCTION

Television Prepares for D	ebut646
Eiffel Tower Television St	lation 648
Trailer Displays Television	n
Television Transmitter	649
Television Goes to War.	

MISCELLANEOUS

Radio Aids Skiers	649
New Facsimile Station	
Loud Speaker Design	
Measuring Cosmic Rays	
Fips Returns—"The Martian Flash"	
H. Gernsback	
What Do YOU Think?	658
New Ham Course—	
C. W. Palmer, E.E.	659
Waves & Harmonics	.660
Radio Kinks	. 661
World Short Wave Stations	
Let's Listen In With Joe Miller	
Silver Trophy Award for Best	
HAM Station Photo	
Short Wave League—"On the Ha	m
Bands"—E. R. Fuller	. 667
Question Box	676
New Tubes for Television.	679
Roster of Newly Licensed HAMS.	
New Radio Apparatus	691

Cover composition by H. Gernsback and Thomas D. Pentz.
Photo of Deanna Durbin, Courtesy C.B.S.—See special article, page 651.

RADIO & TELEVISION—Published monthly on the tenth of the month. Entered as second-class matter Feb. 15. 1938, at the post office at Springfield, Mass., under the act of March 3, 1879. Trademarks and copyrights by permission of H. Gernsback. Text and illustrations are copyright and may not be reproduced without permission. Subscription price \$2.50 a year in the United States and possessions and Canada, \$3.00 in foreign countries. Make all subscription checks payable to Popular Book Corporation.

Published by Popular Book Corporation. Publication Office—29 Worthington St., Springfield, Mass. Editorial and Executive Offices—99 Hudson St., New York, N.Y. HUGO GERNSBACK. President; H. W. SECOR. Vice-President; EMIL GROSSMAN, Director of Advertising. European Agents: Atlas Publishing and Distributing Co., Ltd., 18 Bride Lane. Fleet St., London, England; Brentano's—London and Parls. Australian Agents: McGill's Agency, 179 Elizabeth St., Melbourne.

Copyright 1939 by H. Gernsback

An All-Around Multi-Meter for Amateurs—Herman Yellin, W2AJL

Latest Television Data

A Switched-Coil 8-Tube Receiver

How to Connect and Use the HAM Beginner's Transmifter—C. W. Palmer, E.E.

Electronic Television Course—Part 2— Henry Townsend

World-Wide Digest of Radio & Television Articles

Antenna Systems for HAMS—Herman Yellin, W2AJL — The Half-Wave Hertz type

For "Hams" and "Fans"—A 6-tube 1.4 volt Superhet—Harry D. Hooton, W8KPX

Certified Circuits

When you see this seal on a set it is a guarantee that it has been tested and certified in our laboratories,

as well as privately in different parts of the country. Only constructional—experimental sets are certified.

You need not hesitate to spend money on parts because the set and circuit are bona fide.

This is the only magazine that ren-

EASIER WAY SUCCE

LEARN THE GREATEST INDUSTRY OF THE AGE — TRAIN NOW FOR A REAL FUTURE

Here is YOUR opportunity. Every day brings news of new developments in this fascinating, big-pay field, with new jobs and a greater future for trained men than ever before. If you are ambitious to get ahead, MAIL THE COUPON BELOW and I'll tell you about my "Pay After Graduation" plan, which has enabled thousands to get Coyne Training with very little money. Get training first, then take 12 months to complete small monthly tuition payments starting FIVE MONTHS after you begin your training. NOT a Home study course. Of C. Pewie

Opportunities for a Good Job, or a Business of Your Own

Are you dissatisfied with your job? Are you out of a job because you lack specialized training for a live industry? Is your future uncertain? Then let me show you an amazing, easy way to get your start in Radio, where thousands of TRAINED MEN earn good pay. Where hundreds of Coyne Graduates are drawing Good Pay every week. Coyne has been training ambitious fellows for their success since 1899. Whether you are 16 or 40 years old, Radio and Television thru Coyne training offers you your start for a real future—and you can start training any time.

earn By Doing in In Big Coyne Shops

The great Coyne Shops are famous the world over for their unusual Learn-by-Doing method of practical, individual instruction. There is no book study, no reciting—you learn quickly and thoroughly by doing actual jobs under the personal guidance of trained instruc-tors, on a great outlay of Radio and Sound equipment assembled strictly for training purposes. That is why, in 12 short weeks, we are able to take fellows without previous experience or a lot of book learning, and train them for their start to a real future.

PART-TIME EMPLOYMENT TO HELP YOU "EARN WHILE LEARNING"

If you need part-time work to help pay your living expenses we will give you the help of our employment department to assist you to get a part time lob, as we have thousands of others. We give you a 12 weeks practical training in the great active shops of Coyne... on one of the greatest outlays of Radio apparatus ever assembled... real radios, sound amplifiers, modern service instruments, analyzers. oscilloscopes, television units. microphones, recorders and complete radio transmitters... full sized... in full operation every day!

HOME OF COYNE SHOPS

THIS IS our fireproof modern home wherein is installed thousands of dollars worth of RADIO EQUIP-MENT. Every comfort and convenience has been arranged to make you happy and contented during your training.

RADIO SERVICING
PUBLIC ADDRESS & SOUND MAN
AUTO RADIO INSTALLATION & SERVICE
RADIO FACTORY INSPECTOR & TESTER
STUDIO TECHNICIAN
RADIO OPERATOR
TELEVISION I ADDRESSOR TELEVISION LABORATORY MAN REFRIGERATION SERVICE MAN AUTO IGNITION & BATTERY MAN

and many other money making oppor-tunities in the Radio field. Learn by actual work on real radios, sound ampliactual work on real radios, sound ampli-fiers, modern service instruments, ana-lyzers, oscilloscopes, television units, microphones, recorders and radio trans-mitters, in actual operation right in the Coyne shops.

REFRIGERATION

Send the coupon today and I'll tell you about the Refrigeration instruction I am now including at no extra cost.

H. C. LEWIS, President ELECTRICAL

Founded 1899 CHOOL

500 South Paulina Street

Dept. 39-2K

Chicago, III.

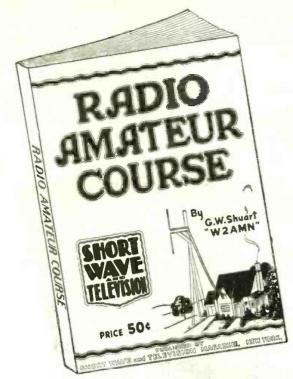
PROOF That Coyne Training Gets QUICK Results

"Accepted a position with — Co. . . I am well satisfied with the job . . thanks for your past interest and help in securing my present position." John Hotis, N. Y. I was transferred . . . to the new — store . . . for nulman, Wash, as head of the Service Department. Of course I received another substantial increase in wages. I certainly appreciate all the help you gave me. — E. Eden, Wash. I was just a common clerk in a hardware store before coming to Coyne. Everything is different since I graduated from Coyne—shorter hours, earnings increased 5%."—Arne Wiklem, Minn. And I could quote from hundreds of similar letters from successful Coyne-trained men. WHAT THEY HAVE DONE, YOU SHOULD BE ABLE TO DO!

GET THE FACTS...NOW

Coyne is your great chance to get into this big-pay field. This school is 40 years old . . Coyne training is tested. And it costs you nothing to find out about this amazingly easy practical way to learn Radio. Simply mail the coupon below and I'll send you the big. free Coyne book, with photographs facts opportunities. There's no obligation so act at once.

paping Send Today for this FREE Book! H. C. LEWIS, President


Coyne Electrical School, Radio Division

500 S. Paulina St., Dept. 39-2K, Chicago, IIL

Without obligating me, send full details of your "PAY-TUITION-AFTER-GRADUATION" Plan and Big Free Illustrated Catalog.

NAME	
ADDRESS	•
CITYSTATE	

Mail in envelope or paste on postcard.

Your Money Back.

IF THE RADIO AMATEUR COURSE DOES NOT REPRESENT THE GREATEST BOOK VALUE EVER OFFERED TO THE RADIO "FANS" FOR 50c

O convince you that there isn't a better book buy today, the publishers of the RADIO AMATEUR COURSE make the sensational offer of a money-back guarantee on such a low-priced book. Stop in at any of the many dealers listed at the right and examine this yolume. See for yourself if the RADIO AMATEUR COURSE isn't just the book you've always wanted.

Printed on the finest quality paper-well illustrated attractive 4-color cover-complete with radio information you must have. It contains a step-by-step program for obtaining a short-wave radio education.

> Written by George W. Shuart, W2AMN, foremost short-wave authority

61/4 x 91/2 INCHES

OVER 150 RADIO DIAGRAMS and TECHNICAL PHOTOGRAPHS

RADIO AND TELEVISION

99 Hudson Street,

New York, N. Y.

All Prominent RADIO DEALERS Ready to Show You This Big Book!

ARIZONA

Sam's Cigar Store, 127 N. First Ave., Phoenix CALIFORNIA

Scott Wholesale Radio Co., 344 E. Fourth Street, Long Beach, Offenbach Electric Co., Ltd., 1452 Market Street, San Francisco. Zack Radio Supply Co., 1426 Market Street, San Francisco. COLORADO

Auto Equipment Co., 14th at Lawrence, Denver.

Radio Inspection Service Co., 227 Asylum Street, Hartford. Stern Wholesale Parts. Inc., 210 Chapel St., Hartford.

GEORGIA

Service Co.

GEORGIA
Wholesale Radio Service Co., Inc.,
430 W. Peachtree St. N. W., Atlanta.
ILLINOIS
Allied Radio Corporation.
833 West Jackson Blvd., Chicago.
Newark Electric Company,
226 W. Madison Street. Chicago.
Wholesale Radio Service Co., Inc.,
901 W. Jackson Blvd., Chicago.
INDIANA

INDIANA

Van Sickle Radio, Inc., 34 West Ohio Street, Indianapolis.

MASSACHUSETTS

MASSACHUSETTS
Greater Boston Distributors,
40 Waltham St. Boston,
H. Jappe Co., 46 Corthill, Boston,
Wholesale Radio Service Co., Inc.,
110 Federal Street, Boston,
Springfield Radio Co.,
97 Dwight Street, Springfield,
H. Jappe Co.,
74 Mechanic Street, Worcester,
MICHIGAN
Rissi Brothers, Inc.,
MISSOURI
MISSOURI
Modern Radio Company

Modern Radio Company, 409 No. Third Street, Hannibal, Burstein-Applebec Co. 1012-14 McGee Street, Kansas City, Van Sickle Radio Co. 1113 Pine Street, St. Louis.

NEBRASKA

Radio Accessories Company, 2566 Farnam Street, Omaha. NEW JERSEY

Arco Radio Co.

227 Central Arenue, Newark.

Wholesale Radio Service Co., Inc.,
219 Central Avenue, Newark.

NEW YORK

Sarvice Co., Inc.,

NEW HAMPSHIRE

Radio Service Laboratory, 1187 Elm Street, Manchester.

OHIO

News Exchange,
51 So. Main Street, Akron.
Canton Radio & Supply Co.,
1140 Tuscarawas Street, W., Canton.
United Radio, Inc.,
1103 Vine Street, Cincinnati.
The Hutshes-Peters Electric Corp.,
178-180 N. Third Street, Columbus.
Standard Radio Parts Co.,
135 East Second Street, Dayton.

OREGON

Portland Radio Supply Co., 1300 W. Burnside Street. Portland.

PENNSYLVANIA

Radio Distributing Co., 1124-26 Market Street, Harrisburg. M. & H. Sporting Goods Co., 512 Market Street, Philadelphia. Cameradio Co., 963 Liberty Ave., Pittsburgh.

RHODE ISLAND

W. H. Edwards Co., 32 Broadway, Providence, R. I.

TEXAS

Amarillo Electric Co., 111 East 8th Avenue, Amarillo.

UTAH O'Loughlin's Wholesale Radlo Supply, 315 South Main Street, Salt Lake City. Radio Supply, Inc., 46 Exchange Place, Salt Lake City.

WASHINGTON

Spokane Radio Co., Inc., 611 First Avenue, Spokane.

WISCONSIN

Radio Parts Co., Inc., 536-538 W. State Street, Milwaukee,

AUSTRALIA

McGill's Agency. 183-184 Elizabeth Street, Melbourne.

CANADA

The T. Eaton Co., Ltd.,
Winnipes, Manitoba.
Canadian Electrical Supply Co., Limited.
285 Craig Street W., Montreal, Que,
Metropolitan News Agency,
1248 Peel Street, Montreal, Que.

CUBA

The Diamond News Co.. Palacio Asturiano, Por San Jose, Habana.

ENGLAND

Gorringe's American News' Agency, 9a; Green Street, Leicester Square, London, W.C.2.

HOLLAND

Radio Peeters, Van Wovstraat, Amsterdam, Z. INDIA

Empire Book Mart, Box 631. Bombay.

MEXICO

American Book Store, S. A., Avenida Madero 25, Mexico City, Central De Publicaciones, Avenida Jusrez. 4, Apartado 2430, Mexico, D. F.

NEW ZEALAND

Te Aro Book Depot, Ltd., 64 Courtenay Place, Wellington.
SOUTH AFRICA

Technical Book Co. 147 Longmarket Street, Cape Town.

If this book is not at your dealer's, send your order directly to us. We will credit your dealer with the sale of this book. To order your copy of RADIO AMATEUR COURSE, fill in coupon below and mail.

Gentl (50c) for RADIO	emen: or which AMA register	I enclos ch pleas TEUR	e herewit e send m COURSE	h my ren e POSTI (Remit	nittance of PAID, my by check	York, N. Y. Fifty Cents copy of the cor money S. Postage
Name						· · · · · · · · · · · · · · · · · · ·
Address						
City				.State .	•••••	R&T-339

HUGO GERNSBACK, EDITOR

H. WINFIELD SECOR. MANAGING EDITOR

The SUN's Effect on the Propagation of SHORT WAVES

Emile Girardeau

General Director, de la Compagnie Générale de Télégraphie Sans Fil, Paris, France.

 THE study of the propagation of short waves has definitely proven that there exists a certain relation between the varying conditions in the activities of these waves and the changes in the Sun's radiations.

The constant observation of these phenomena, during the last ten years, in the most important centers of radio transmission and reception in France, has made possible the compilation of technical data of unquestionable value from which it is now

possible to draw certain conclusions.

It is known that the Sun exerts a normal and regular influence upon the propagation of short waves; another well-known fact is that the length of the wave used for communication between two given points needs to be shorter during the day than at night, and also shorter in Summer than in Winter at the same time of the day.

For example, in 1937 a day wave of 15 meters for trans-Atlantic communication was efficient in Summer, while a wavelength of 22 meters had to be used in Winter. At night, a 30 meter wave was used in Summer and a 40 meter wave in Winter. Another example: the 22 meter wave successfully linking Paris to New York, five hours a day in January, 1935, was used for progressively longer periods, being efficient ten hours a day in March, and used continually throughout a twenty-four hour day in Tune

in June.

The efficiency of this wavelength decreased from June to December, from twenty-four hours a day in June to only five hours a day in December.

The influence of the Sun's altitude upon the propagation of short waves along various lines of Radio communications has

been determined accurately.

It has been observed that, over a path uniting two points situated on widely different longitudes, such as Paris and Tokio, where the respective altitudes of the Sun vary greatly at the same instant, the efficiency of a given wavelength is reduced much more than over our almost North-and-South connections, such as Paris to Buenos Aires.

Another difficulty observed is that it is almost impossible to find a short wave capable of maintaining satisfactory communica-tions between Paris and Tokio on certain Winter days, between the hours of three and six o'clock in the morning. In this case long wave transmitters, utilizing high-frequency alternators, are operated to assure permanent connections.

There are also the variations in atmospheric conductivity, chang-

ing from year to year, which have been observed to follow the variations in the Sun's activity.

In Figure 1 is shown a graph of the annual solar activities according to the sunspot numbers used by astronomical observatories. The curves

"Guest"

Twenty-fifth of a Series of "Guest" Editorials.

are plotted to indicate the average number of hours when wavelengths of 14 to 18 meters were used successfully.

One will notice that the variations in the Sun's activity are

nearly identical with variations in wave efficiency. However, for wavelengths of 37 to 50 meters the variations are opposite and almost inversely proportional.

From the practical viewpoint of commercially exploiting radio communications, the record of these continuous observations is of great value, since it enables us to foretell the most practical wavelength to use, on a particular day, at a certain hour.

Nearly eleven years have passed since these records of short wave propagations were written, and eleven years is the approximate duration of a cycle in the variations of the Sun's activities, which is graphically shown in Figure 2.

Referring to these observations, it is now possible to foretell which will be the best wave to use at a given hour of a certain

day, of any month of any year.

Uncertainties and inconveniences can be thus eliminated by avoiding the use of a wavelength unsuitable for communications

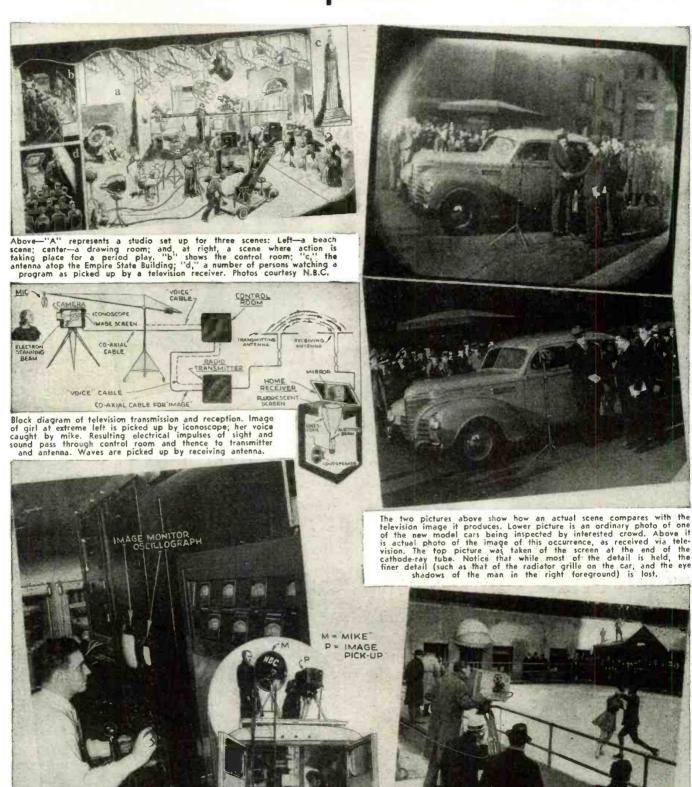
affected by the varying conditions so far outlined.

There are also other consequences of Solar phenomena, the study of which is of great interest because of the occasional troubles in propagation known as fading.

Fading, or the attenuation of a signal being received, may be intermittent, or more or less slow, or at times quite sudden. Nevertheless, the comparison of these effects with the records of astronomical observatories on disturbances in the earth's magnetic field (which invariably follow changes in the Sun's activity) indicate the Sun as the original source of these disturbances.

The power and the influence of the Sun over all things on

earth is again reasserted by science, after having been forgotten during the centuries that followed the fall of the ancient gods,


We can again say, like Phaedra: "Sun, divine Sun from thou I came," or like the Pharaoh's prayer say: "Thou Sun who created the world according to Thy desire."

Solar phenomena are revealed either by spots of varied appearance, or by immense flames pouring out of the brilliant disc.

The spots form dark areas of various shades and changing dimensions. Taking as an example a recent occurrence from the 30th of September to the 10th of October, 1937, one could observe on the torials.

(Continued on page 682)

Television Prepares for Debut

Inside the control room of the mobile unit.
Above, an engineer watches the image on the large cathode-ray tube and wave-form on the small one. At the right is seen a set-up atop the truck to pick up sight and sound.

The television camera makes a pick-up of the skaters at the rink in the Sunken Gardens at Radio City. Notice the man in the foreground wearing a light gray felt hat. He is the announcer, You can see the microphone cable running back over his right shoulder.

STATIC-FREE RADIO

Invented by Armstrong

New frequency-modulated wave points the way to a new era in broadcasting. Among other features it provides high-fidelity and multiplex operation.

 MAJOR EDWIN H. ARMSTRONG, Professor of Electrical Engineering at Columbia University, has devised a new method of radio transmission known as frequency modulation.

In the present form of wave used for broadcasting, the carrier wave is amplitude modulated; that is, the strength of the wave varies as the voice modulates it. With frequency modulation, the frequency of the wave is changed for each variation in the voice, the amplitude remaining constant. Due to the wide band used for this new system and the special receiver employed for its reception, very high-fidelity reception, free from static and other noises, results.

Not only is static-free transmission achieved by this newest invention, but tube noises and other interfering disturbances are eliminated.

Professor Armstrong has built a powerful transmitting station for his new frequencymodulated system at Alpine, N. J., near New York City. This station (W2XMN) has been picked up as far distant as 300 miles at a special receiving station erected atop Mt. Washington in New Hampshire. (Mt. Washington is 6000 feet high.)

At present the Alpine station is operating on a wavelength of 7.5 meters, and while some experimenters and Hams have heard

Static-less radio programs will be broadcast next Spring from this 400foot tower, when station W2XMN begins operating on the new Armstrong type of ultra short radio wave, which wipes out tube noises, fading and interference. W2XMN, located atop the Palisades near George Washington Bridge (N.Y.), will be the first highpowered frequency-modulated radio station in the world. The tower, with its 150-foot cross-arms, can be plainly seen from Riverside Drive, N. Y. City.

the wave broadcast by this station by listening in with super-regenerative receivers tuned to the edge of the band, considerable distortion occurs; to realize the full benefit of the new type of frequency-modulated wave and the high fidelity afforded, a special receiver has to

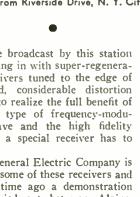
The General Electric Company is building some of these receivers and a short time ago a demonstration was carried out between Alpine, N. J., and the G.E. laboratories in Bridgeport, Conn.

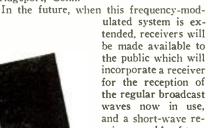
ulated system is extended, receivers will be made available to the public which will incorporate a receiver for the reception of the regular broadcast waves now in use, and a short-wave receiver capable of tuning in the special frequency-modulated waves.

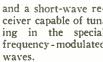
Other experimental transmitting stations using the Armstrong

dio wave. The station is located atop the Palisades near New York City, and will have a service area of 100 miles. A table has been made into a control desk, as shown in the foreground.

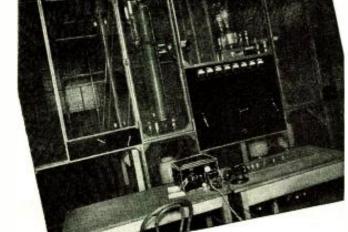
frequency-modulated system have been erected at Yonkers, N. Y., Albany, N. Y., and Storrs, Conn.


The width of the wave channel radiated by the Alpine station is twenty times the width of the ten kc. wave sent out by the modern broadcast station. In other words, the width of the Armstrong frequencymodulated wave is 200 kc. In the wavelengths between one and ten meters, there is room for 1350 stations using the 200 kc. wide "f.-m." wave. In other words, there is opened up a brand new frequency spectrum for broadcast stations, in fact, more stations than we probably have immediate need for.


The new Armstrong static-free transmission system should prove very useful in the future for relaying television programs between cities, as it will undoubtedly prove far cheaper than would the use of coaxial cables between cities.


Range of Station

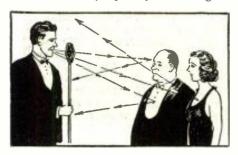
The average range (radius) of one of these new "f.-m." stations will be about 100 miles, and if in the future our broadcasting system should be converted to this method of radiating waves, we would need many more stations than we have at present to serve the same communities with broadcast programs, owing to the smaller range of the ultra-short wave "f.-m." stations. With the higher power now being used by many


(Continued on page 697)

Noise-free radio programs will be broadcast next Spring through the amplifier shown, when station W2XMN begins operating on the new Armstrong type of ra-

View of the Future "Broadcasting House"

THE London Broadcasting House will look like this in 1940. The entire plant is being remodeled and will be extended to more than twice its present size. Excavation and the erection of retaining walls around the site should be completed about the middle of this year.


The building is expected to be finished by the end of 1940. There will be five underground studios to eliminate all outside noise (bombs?). The main studio will be 80 feet x 54 feet x 30 feet tall; there are also to be three dramatic studios, a sound effects room and a number of rehearsal rooms. Above the ground level will be a number of floors of offices. The control

room will be on the 7th floor and a restaurant on the 8th or top floor.

Audiences Cause Distortion

THAT the clothing (or lack of it) in a studio may wreak havoc with the acoustics was discovered at a recent Toscanini broadcast. When it was noticed that tone values, especially in the higher

frequencies, were registering with unusual sharpness, an investigation was started. The cause of the trouble was found to lie in the fact that a large number of men in the audience were wearing stiff dress shirts, and many of the feminine visitors to the studio had large expanses of backs and bosoms uncovered and thus reflecting.

Soft cloth absorbs sound far better than stiff materials, such as a boiled shirt or a sharp shoulder blade. Therefore, the woe!

Well—Could You?

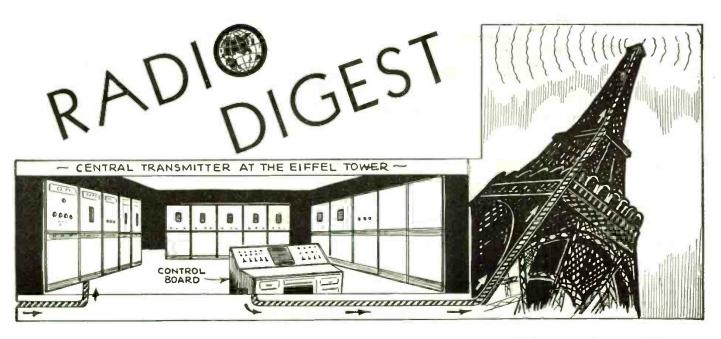
Malayan Radio Times included in its last issue a questionnaire measuring 81/2" x 22", asking listeners a number of questions under the heading of "Could YOU Improve the Singapore Programs?" Some of the questions include "What type of programs do you prefer?"; "Do you prefer 'live' or recorded programs?", etc. Questions Nos. 8 and 10, which particularly appealed to the world-wide radio review editor, are printed verbatim: "Do you enjoy Chinese Music? If so, which do you prefer: Teochew, Cantonese, Hokien-Amoy, Mandarin, Teochew Gua-Kang, Peiping, Sze Shuan"; "Which of the following Malay programs do you most enjoy? Put numbers against the items to show the order of your preference: Kronchongs, Lagu Malayu, Lagu Extras, Lagu Nasib & Sair, Dramas."

Eiffel Tower Television Station

AN interesting article on the construc-tion of the television station installed in the Eiffel Tower, Paris, France, appears in a recent issue of Radio Revista. As the picture above shows, the video equipment, terminal studio equipment, and transmitter apparatus are linked to each other and to the Eiffel Tower radiator by, means of a buried co-axial cable. Thirty kilowatts are used to put the signal on the air and to insure its covering the Parisian area with adequate strength.

- Orkney Amateur

MR. J. C. Graham, traffic control officer of the British Air Ministry at Kirkwall Airport on the Orkney Islands, has erected an amateur transmitting station at that point, according to Practical and Amateur Wireless. If you should hear GM3TR, you will be tuned in on Mr. Graham.


Trailer Displays Television

NOW Midland Television, Inc., of Kansas City, Mo., has equipped a Covered Wagon display coach with portable television demonstration equipment. Special racks were mounted in the trailer to hold the power supplies, amplifiers and a 9-inch cathode-ray monitor tube. Both

the pickup and the monitor are permanently mounted in the trailer. In addition to this equipment, two television receivers are carried, to be taken out and set up in the auditorium or other place where the demonstration is to be made. The definition achieved by this system is 90 lines.

648 **RADIO & TELEVISION**

Radio Aids Skiers

A NEW radio telephone circuit has been set up to enable the hostess at Sunshine Lodge, which is 8,000 feet above sea level, to send a daily message to skiers in various parts of the Canadian Rockies. The photograph shows Miss

Ina May Hummon, hostess at the Lodge, seated at the microphone at the transmitter, which is near Banff.

Television Transmitter

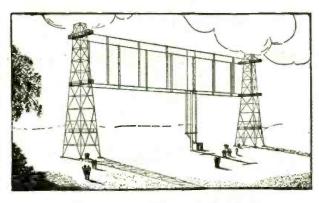
BAIRD of Boston is on the air with a 441-line television signal sent at 30 double interlaced frames per second. While the station has no regular schedule

at the present time, it averaged almost one hour a day during the past year. Programs consist of both direct pickup and motion picture film. The station, WIXG, is sending out the video signals on 46.5 megacycles at 500 watts. There is no audio portion of the program broadcast at the present time.

New N.B.C. Short Wave Antennas

A NEW type of directive short-wave antenna has been installed for N.B.C. short-wave stations, W3XL and W3XAL, which will beam signals from 25,000 watt transmitters directly on Latin America, with effective strength equivalent to 600,000 watts! The frequencies used will be 21.63 and 9.67 mc. The antennas are of

the broadside type, consisting of two 150-foot towers 350 feet apart. There are five panels in the radiator and five in the reflector. The beams are directed at Buenos Aires and Rio de Janeiro. The design of the aerials is such that the center of the beam can be changed through an angle of 20 degrees to cover various other areas of the South American continent. By means of a method of phasing the antenna ele-


ments, the beam may be swung through this angle simply by pushing a button located on the transmitter control panel. The antennas will be fed through co-axial cables with an outer diameter of $3\frac{1}{2}$ inches. The space between the center conductor and the outer tube is to be filled with nitrogen gas under pressure to keep out moisture.

Channel, Channel, Who's Got the Channel?

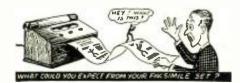
WHEN the Germans took over the Czech Moravska-Ostrava transmitter installed at Soinov (a part of the Sudeten lands ceded to Germany by Czechoslovakia), the Nazis inherited a problem in addition to some equipment. The studio is at Moravska-Ostrava and the Czechs are eager to use it but they can't find a frequency to operate on, the Germans claiming that the 1.204 mc. channel is part of the transmitter. Just to make things simpler, most of the programs now being sent over this outfit are relayed from Breslau.

Television Goes to War

OUR America, always in the foreground in invention, is developing television equipment for defensive warfare. Television pick-ups will be sent aloft in planes or balloons, transmitting images of enemy terrain to American staff head-quarters and to gun emplacements which may be located several miles back.

View of the Past

DO you recognize the weird object on the table? In case you can't, it is a loose-coupler radio set of the vintage of 1910. J. S. Dobbins, an amateur of that



vintage, is seen enthralled by the "magnificent" programs which were on the air in those days. Mr. Dobbins' call was WNU and his station was located in New Orleans, La.

In those days "fans" listened in for waves several thousand meters long. Loading coils as big as the operator were common, the sections being switched in as required.

- 1. Every year brings the story of some great invention-which no one actually ever sees. Of the following, which is (or are) as yet unproven?
- a. The death-ray, which will kill at distances of several miles.
- b. The destruction ray, which will stop the motors of airplanes and automobiles at a distance.
- c. The television kit, which converts any broadcast receiver for sight-and-sound.
- d. A means of transmission so broad that it can be received without tuning.
- 2. Under the International Telegraph Regulations, as revised by the Cairo conference in 1938, a period is sent as
 - a. didit didit didit
 - b. didah didah didah
 - c. didahdidahdidah
 - d. dadah dadah dadah
- 3. And under the same rulings, the comma sign is now
 - a. didahdidahdidah
 - b. dahdahdididahdah
 - c. dididahdahdidit
 - d. dahdit dahdit dahdit
- 4. The greatest advance in radio in 1938 was said to be
- a. "Wireless" remote control automatic tuning for receivers.
- b. Preparations for the release of television.
 - c. The beam power oscilloscope.
- d. The use of ultra-short waves for trans-Atlantic communications. -
- 5. In the "Schmidts at Home" dramatic broadcasts from the Deutscher Kurzwel-Iensender, the American character, Billy Smith, is
- a. the love interest d. a hardboiled
- b. an admirer of business man
- Germany
- e. an anti-Nazi f. a shrewd Yankee
- c. a nice nitwit farmer
- 6. If you are fortunate enough to have a facsimile receiver in your home,
- a. it will typewrite printed matter received via radio.
- b. it will reproduce both type and pictorial matter received via radio.
- c. it will make a permanent readable record of broadcast talks and music.
- d. it will show moving images of broadcast scenes and programs.

7. "You're crazy! That magazine isn't published any more!" exclaimed the newsdealer, when the customer asked him for a

- a. Radioland
- d. Tower Radio
- b. All-Wave Radio
- e. Wireless Age
- c. Radio Stars
- f. Popular Radio
- 8. The various station selector circuits in a set using push-button tuning are aligned
- a. by means of a movable iron core in
- each of a number of coils.

THIS month a new method of scoring is used in the R. & T. Radio Test Quiz. For each question you answer fully, credit yourself with 10 points; for each you get half right, take five points; etc. A perfect score is 180; a very good score is 136; a good score is 110; fair is 90—and if your score is below 60, you'd better read a lot of books. Harry Winfield Secor, Managing Editor of this publication, won 142 points in 10½ minutes.

- b. by means of trimmer condensers in parallel with various coils.
- c, through the use of an RF signal gencrator.
- d. by unwinding a number of turns from each of various coils.
- 9. In Spain, both the Nationalists and the Loyalists refer to short waves as
 - a, chicos ricos
- d.. ondas cortas
- b. poco dinero

- e. gallinas gordas
- c. bobinas rojas

- f. ojos azules
- 10. Radio has been credited with much valuable work in advancing the development of
 - a. burglar alarms
 - e. automobile de-
- b. motion pictures sign
- c. aviation
- d. hearing aids
- f. weather fore-
- casting ...
- 11. Can you match the following broadcasters with the types of characters they portray? Well, try your hand at it, anyway.
- b. Gertrude Berg

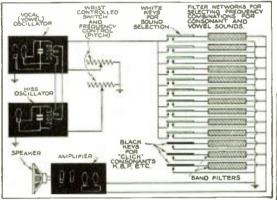
- d. Frank Morgan

- c. Jane Ace
- e. Ned Sparks
- f. Kenny Baker
- a. Jack Benny A. Grouchy
 - B. Silly C. Penurious
 - D. Timid

 - E. Boastful
 - F. Philosophical
- 12. Marconi first sent his famous three dots flashing across the Atlantic ocean approximately
- a. 30 years ago b. 40 years ago
- d. 60 years ago
- c. 50 years ago
- f. 80 years ago
- e. 70 years ago

- 13. Perhaps you don't remember, but "talking tape" is or was
- a. steel ribbon on which sounds have been magnetically recorded.
- b. a form of indoor antenna, made of flat tinsel.
 - c. talking movie film.
 - d. similar to talking movie film, but carrying sound onlywithout pictures.
 - 14. In broadcasting parlance, "live shows" are broadcasts
 - a. include risque jokes. b. do not originate from
 - phonograph records. c. include hot dance music.
 - d. are to continue for a series, as compared with those which are only "one-time shots."
 - 15. Newspapers have a very strong feeling about radio because
 - a. radio set manufacturers spend lots of money advertising in the papers.
- b. radio stations sometimes compete with the papers by broadcasting
- news.
- c. advertisers spend money for sponsored programs which might otherwise be spent on newspaper advertising.
- d. publishing the programs of radio stations attracts more readers to the papers.
- 16. Ultra-short radio waves are said to travel much like
- a. sound waves
- d. light waves
- b. ocean waves
- e. crime waves
- c. permanent waves f. Longmayshiwaves
 - 17. Frequency modulation transmissions a. travel farther than other types.
- b. pick up less static than others.
- c. afford higher fidelity than others. d. merely evade older patents.
- 18. If you were running a radio receiver and the line cord got hot, you would know
- a. there was a burned out primary on the power transformer.
- b. that it was an AC/DC receiver, working as intended.
- c. that there was a short-circuit in the
- set. d. that it was merely due to overloading because of excessively strong signals.

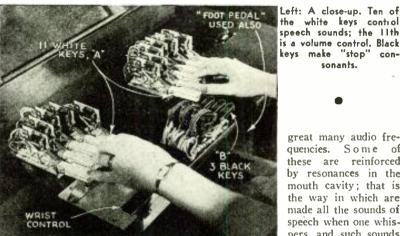
How the VODER Creates Human Speech!


Cover Feature

AN electrical device, based on radio principles, under control of an operator at a keyboard, actually talks - emitting words and sentences! Known as the Voder, it was developed by Bell Telephone Laboratories as a scientific novelty to make an interesting educational exhibit for the company's displays at the San Francisco combination. It takes a good deal of practice and some time to learn-not as much time as it takes the human to learn the mechanisms he is born with, but still quite a while. And it talks with what might be called a slight electrical accent. Nevertheless, a skilled operator can make it say what she wants.

The designers of the Voder provided it with electrical equipment corresponding to the two kinds of speech sounds. One kind of sound is made by forcing the breath through the mouth, past tongue, teeth and lips. Turbu-

Above: Seated at the keyboard, this young lady can carry on a conversation by pressing keys. A foot pedal changes inflections. The "voice" comes through the loud speaker.



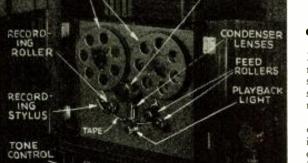
Above: Simplified diagram of the "Voder," showing how radio circuits create the human voice.

Exposition and at the New York World's Fair. It is built, except for its keys, entirely of apparatus used in everyday telephone service.

The Voder is the first machine in the world to create speech. Individual vowels and consonants have been made by a variety of instruments, but they have never before been linked into connected speech. Seated at a keyboard something like that of the oldfashioned parlor organ, an operator can carry on a conversation simply by pressing keys, singly or in

DEFI S

lence in the air-stream sets up a Voder there is an electrical hiss, and with hissing sound which contains a


great many audio frequencies. Some of these are reinforced by resonances in the mouth cavity; that is the way in which are

sonants.

speech when one whispers, and such sounds as s, th and f. In the

made all the sounds of

Records on Paper Tape from Mike or Phone

AUDIBILITY METER FOR RECORD

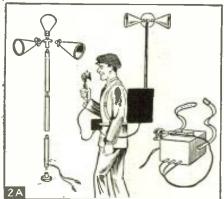
 A NEW type of voice recorder, invented by Merle Duston, veteran radio engineer, affords instantaneous playback of sound - on - tape. without need of processing.

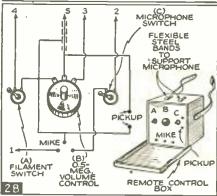
In the new apparatus, cellophane or glassine tape is treated with a secret chemical process. This tape is then placed on reels in the machine, as shown in the accompanying illustration. When words are spoken into the microphone, current passes through the tape from the stylus, recording by discoloring the tape as it goes through.

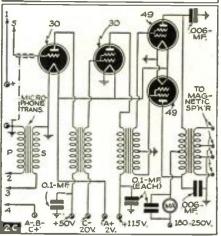
(Continued on page 701)

To reproduce the sound, the tape is rewound and fed through again in the same direction. The discolorations in the tape intercept a light beam which travels from a small bulb on the panel of the receiver through a condensing lens system and to a photo cell, the output of which is amplified and reproduced in the usual way.

When 6-inch rolls of tape are used, the apparatus will record for approximately 20 minutes without a change; if 71/2-inch rolls are used, one hour's recording can be had. A single track is used on the tape so that lengths may be cut out and filed, much as a letter would be. The inventor envisions use of the apparatus in business offices.


New Facsimile Station


1 FACSIMILE stations are breaking out all over the United States. One of the most recent of these is that installed by Station WBEN of the Buffalo Evening News. At one o'clock every morning, this station (shown in Fig. 1) transmits an hour's program, producing a miniature 3-page newspaper. The transmissions are on 900 kc. with 1000 watts of power. Picture shows the transmitter.


gram of which is shown in Fig. 3, is extremely simple to construct. The coils are wound on one-inch forms of No. 22 d.c.c. wire. Coil A consists of 50 turns; coil B, 30 turns; and coil C, 60 turns. These are the short-wave coils. The long-wave coils are D, 250 turns; E, 150 turns; F, 300 turns. The variable condenser has a capacity of .0005 mf., and the fixed condenser, .002 mf.

The designer of the apparatus suggests

Public Address Pack

A PORTABLE public address system that, together with microphone and loud speakers, may be carried on the back of one operator, is described in Radio Revista.

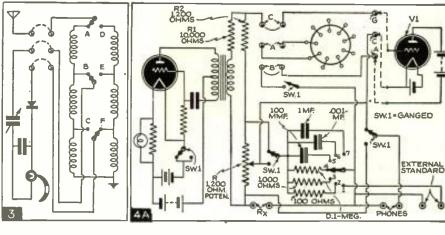
Fig. 2A shows the pack as it appears in use. The microphone may be carried inside the case or strapped to the top, while the loud speakers are supported on a collapsible aluminum or bamboo pole.

Fig. 2B gives the detail of the panel, and the switching system which permits a microphone and pick-up to be used and to be faded in and out by means of a volume control.

Fig. 2C illustrates the balance of the wiring diagram to which the numbered terminals in 2B connect. Power for the complete apparatus is supplied by dry cell batteries. The miniature type may be used, as the plate current drawn is relatively low and can be still further reduced by using C bias on the push-pull stage, although this will result in some loss of volume or quality. Standard transformers are used throughout, and values of all fixed condensers are given. Meter may be omitted.

All-Wave Crystal Receiver

3 A CRYSTAL receiver employing band-switching has been described in Radio Revista. This receiver, a circuit dia-


that a single phone of no more than 500 ohms be used. If aerial is more than 60 feet long, insert a .005 mf. condenser in series.

A.C. Resistance, Capacity Mu Bridge

4 L. FRATER (2AZR), writing in Great Britain's Radio and Television Bulletin, describes a simple and easily constructed A.C. bridge for measuring resistance, capacity and mutual conductance.

The apparatus diagrammed in Fig. 4A may be broken down into three basic circuits. These are shown in Figs. 4B, 4C and 4D. The fundamental circuit used in the bridge which measures resistance is shown in Fig. 4B. The circuit for measurement of capacities is seen in Fig. 4C, while that used to test mutual conductance is given in Fig. 4D. In Fig. 4B, the network consists of the potentiometer R, the two legs of which are R1 and R2, a known resistance, R3, and the resistance to be measured, RX. Alternating current of a low voltage at about 1000 cycles is applied across the potentiometer, and the point S, where no sound is heard in the phones connected as shown, is determined by experiment. As the bridge is then balanced, the formula is

$$\frac{R_1}{R_2} = \frac{R_2}{R_X} \text{ or }$$

where the equation is simplified,

$$Rx = R_a \times \frac{R_a}{R_a}$$

The ratio of R1 to R2 may be easily determined by using a calibrated potentiometer.

To test a capacity, a known condenser, C1, is inserted in place of R3 and the condenser under test, CX, is put in the Mobile Unit Generates Own Power

THE mobile unit of Station KDIB (seen in Fig. 5) has traveled some 3500 miles, broadcasting 60-odd programs on 2790 kc. to KGLO where it was retransmitted on 1210 kc. Five hundred feet of cable are used for line or mike, and when necessary to cover longer distances. a portable unit, W9XRS on 31.1 mc., broadcasts to the truck, which rebroadcasts. The unit's Kato power plant is inset.

position of RX. Fig. 4C illustrates this. The same procedure is followed in making this measurement as in measuring resistance. The adjustment is somewhat more critical because no point of absolute silence may be found, in which case the operator must determine the point of minimum sound.

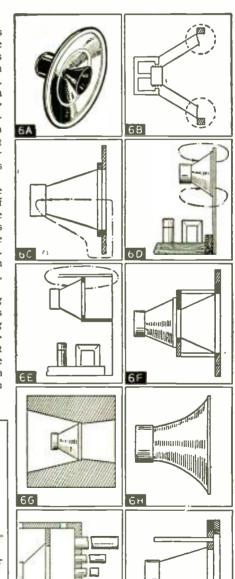
Inductances may be measured in much the same way, substituting the known and unknown inductances at the points R3 and RX or C1 and CX. Terminals are provided for the installation of a standard inductance, although this apparatus is not installed in the equipment in order to economize on space.

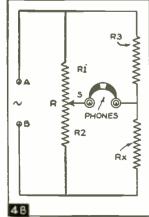
The mutual conductance tests are made with the portion of the circuit shown in Fig. 4D. A point on the potentiometer R is found where no sound is heard, whereupon the formula

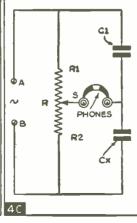
$$Mutual Conductance Gm = \frac{R_2}{R_1 \times R_2}$$

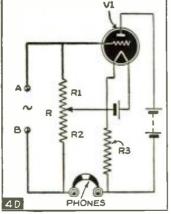
is used. In this case, the resistance R3 must be low in comparison with the anode impedance of the tube under test.

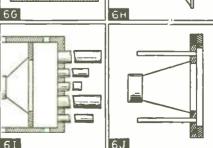
When making resistance and capacity tests, all batteries used in Gm measurements must be completely disconnected from the circuit. The oscillator may be a 2-volt power tube.


Loud Speaker Design


A LOUD SPEAKER which includes a "tweeter" for the highs and a large diaphragm for the lower frequencies, is described in the German publication Rundfunk and pictured herewith in Fig. 6A.


A Russian publication Radio devotes a large section of its latest issue to baffle design. Fig. 6B indicates a speaker employing no baffle. Notice the short path which the sound waves may follow from the front to the back of the diaphragm. A far longer path is found when the speaker employs even a small baffle, as shown in Fig. 6C.


6D shows an application where the speaker must be mounted near the edge of a cabinet. The comparatively short baffle area which would be possible above it is compensated for by extending the baffle toward the rear, thus lengthening the path. A resonating chamber is added to this in Fig. 6E. This is shown in greater detail, and with the addition of a horn, in 6F.


6G shows another method of providing directive properties to a speaker. In this design, the speaker is bi-directional, having two radiating surfaces. The sound is projected both through the smaller horn at the front of the speaker and the larger one at the speaker's rear. A standard American system employing a horn, is shown in Fig. 6H.

78 PRISM RAFT" LIGHT PRISM LENS ELECTRON BEAM LENS SCREEN 70 LENS PRISMS LIGHT SCREEN LENS EVACUATED SPACE BETWEEN MICA & GLASSFILL WITH CRYSTALS CONVEX LENS GLASS PLATE SHEET OF MICA COATED WITH CON-DUCTIVE ELEMENTS ON INNER FACE ELECTRON BEAM FORMING PICTURE 70 LIGHT CRYSTAL SCANNING CRYSTAL COATING ON REFLECTING FACE OF PRISM 7 E LIGHT SOURCE PROJEC-LENS TO SCREEN COMB OF BI-METAL TONGUES

INTERNATIONAL

6I shows a further modification of speaker control. In this particular design, the sound is brought out through tubes designed to resonate at given frequencies. The bass notes are "boosted" by the larger tubes and the trebles by the smaller tubes.

More nearly approximating an American method of some years ago is the design shown in Fig. 6J, in which the feed-back of the speaker is controlled by the use of tuned tubes at the speaker's rear.

New Electron Tubes Designed for Projection Television

SOME radically new ideas for the projection of large screen television images by electronic means is found in the latest issue of Television and Short-Wave World, a British publication. In one scheme, illustrated in Figs. 7A and 7B, an electrooptical matrix would consist of a number of parallel strips of an optical medium, such as glass, Rochelle salts and the like, which become birefrigent (doubly refractive) under electric stress. These strips would be arranged in the form of a rectangular plate, in alternate interstices of which would be inserted thin strips of metal foil to form an edge-on grille. In the other interstices would be arranged small electrodes, each having a small button lying flush with the surface.

The mozaic would be mounted within an evacuated bulb provided with an electron gun and deflector plates in order to produce scanning by an electron beam. The beam of polarized light would be passed through the mozaic and through a second polarizing prism from which it would be projected to the screen. As the beam struck each of the buttons, it would change the electrical potential with respect to the strips on either side of it, thus causing stress on the optical medium between and in this manner modulating the light. This idea, suggested by the Baird Company, was tried some years ago without much success.

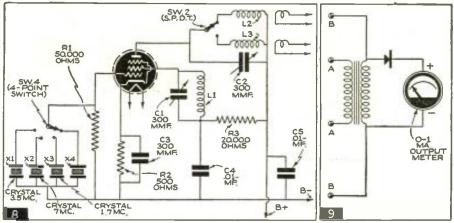
Marconi's Wireless Telegraph Company, Ltd., and L. M. Myers suggest the idea illustrated in Fig. 7C. In theory, a layer of asymmetrical crystals would disperse the light unless they were struck by an electron beam to "line them up" so that they would

pass light to the mirror's surface. This system, however, is still in the theoretical stage.

The not entirely dissimilar system, shown in Fig. 7D, utilizes a cathode-ray tube with an optically polished end-wall, to which is attached the totally reflecting face of a prism. On the inside of the tube's end plates are carbon particles which are given a positive charge. The electron beam causes the carbon particles to move away from the end wall of the tube, thus changing the reflective factor.

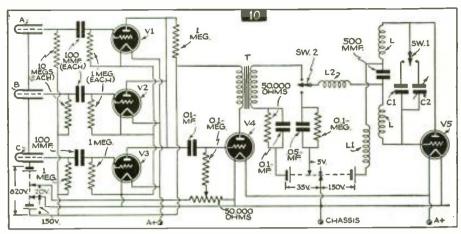
Another idea is to use a very thin metal plate in place of the usual fluorescent screen and to cause the picture element areas of the metal to become incandescent by means of the heat generated by the electron bombardment.

Still another proposed method, shown in Fig. 7E, uses a number of bi-metallic elements which in their cool position block the beam from the light source and then, when heated, bend to permit the beam to pass. Fig. 7F shows detail of the bi-metallic strips. This method, originating in Germany, has not as yet been successful, due probably to thermal lag, though its proponents claim that the use of thin metal with large surface area will speed up the response.


Simple Exciter Unit

A SIMPLE one-tube exciter unit (Fig. 8) is described by W. H. Allen (G2UJ) in the T. & R. Bulletin of Britain. According to the author, the apparatus has been in use successfully for about two years by GW6YQ.

When an output is required at crystal frequency, C1 is tuned to a point where L1 is out of resonance with the crystal in use.


The output may be adjusted to the required frequency by means of a 4-point switch. S2 selects the plate coils L2 or L3, each of which tunes to two amateur bands. L3 is the 1.7 and 3.5 mc. coil. L2 takes effect with switch SW2 in the other position, when 7 mc. is found at about the center of the condenser.

In order to secure doubling, L1, C1 should be tuned to crystal frequency and the anode circuit to twice that frequency.

654

RADIO REVIEW

9 A HIGHLY simplified output meter which uses a crystal to rectify the current for an 0-1 milliammeter, is described in *Practical and Amateur Wireless* of England.

The circuit shown in Fig. 9 makes use only of a one-to-one ratio output transformer, a carborundum crystal detector, and an 0-1 milliammeter. It is, of course, necessary that p.c. be kept out of the meter, and for this purpose the transformer is used.

If the set under test does not already incorporate an output transformer the terminals AA in Fig. 9 are connected to the output of the set. If, on the other hand, the set has a built-in output transformer, the terminals BB are connected across the secondary of the transformer already in the receiver.

The particular type of milliammeter used in the outfit shown had 100 ohms internal resistance.

While this is the apparatus as described in the British magazine, the editors of Radio & Television believe that it would be wise to put a variable resistance of 0-1000 ohms in series with crystal and meter.

Measuring Cosmic Rays

MUCH mystery has always surrounded the type of apparatus used for measuring cosmic ray discharges. Now Wireless World, a British publication, reveals the workings of the transmitters which are sent up in balloons to count cosmic ray emanations, and signal automatically the altitude at which the observations are made.

The 40 mc. apparatus shown in Fig. 10 was used in the Wordie Expedition to West Greenland and worked satisfactorily at altitudes up to 12 miles.

The ray counter consists of two electrodes in vacuum tubes containing small quantities of certain gases. The electrodes are a straight wire and a metal cylinder surrounding it, a potential of about 800 volts positive being kept on the wire. The circuit is completed through 10-megohm resistors, as shown in the diagram. Charges passing through the counters ionize the gas and cause current to flow.

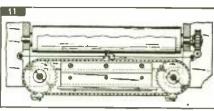
Triples Facsimile Speed

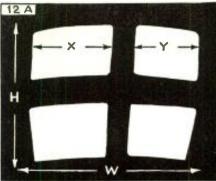
A NEW type of scanner, upon which U. S. patents have just been granted to W. G. H. Finch, triples the speed at which a facsimile image may be scanned and reproduced.

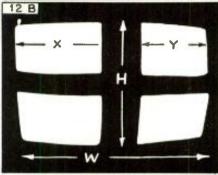
Fig. 11 illustrates the new device, which employs an endless chain upon which are mounted three styli at regular intervals. The chain travels continuously in one direction and at the same time the platen, carrying the paper upon which the image is to be reproduced, slowly rotates. As one stylus passes off the paper at the right, a second commences its line at the left and as this one travels off at the right, the third is caused to begin the next line. When this stylus has passed across the paper, No. 1 is again ready to start.

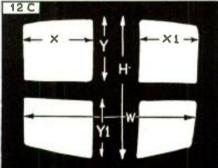
The new design simplifies the mechanism greatly, as a reciprocal motion is no longer needed, a continuous motion taking its place.

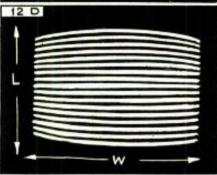
Rails provided in front of the platen guide the styli accurately along their path.

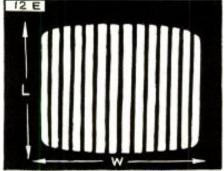

Curing Television's Ills

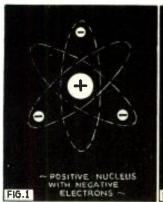

ONE of the most frequent troubles 12 With the television image is due to non-linear scanning in either the vertical or horizontal sweep. Figs. 12A, 12B and 12C show the familiar cruciform pattern sent out by many television stations for test. In Fig. 12A you will notice that the distance X is greater than the distance Y. This is caused by a non-linear sweep voltage from the line time base. In other words, the saw-tooth oscillation has the wrong form. The discharge of the condenser used in the circuit takes place too late. It may be caused by incorrect voltage or by a change in the value due to overload or deterioration, and is usually cured by reducing the value of the cathode resistance or increasing the value of the charge resistance.

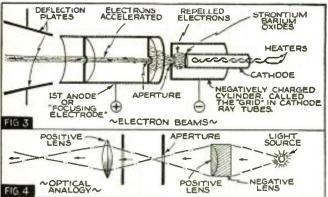

In Fig. 12B, the pattern has its heightto-width ratio out of proportion. The amplitude of the oscillation in the gas relay tube is at fault.


Fig. 12C shows the pattern again, this time as it should be received, although the distance X is slightly greater than X1


(Continued on page 698)







ELECTRONIC **TELEVISION COURSE**

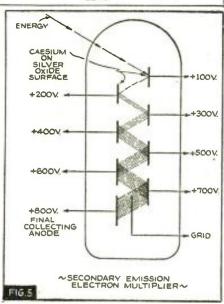
Henry Townsend

Lesson I—Fundamentals

This series of lessons on television has been prepared by a practical television expert and will cover such vital subjects as photo electrics, cathode-ray tubes and how they work, sweep circuits, receiving systems for image and sound, etc.

 ACCORDING to the accepted classical theories, an electron may be defined as a negative particle of electricity. An atom consists of a positive nucleus with one or more electrons revolving in their respective orbits around this positive nucleus. (See Fig. 1.) The Solar System may be compared to an atom, the sun being the positive center with the planets in their respective orbits revolving around it representing the electrons.

These electrons, as has been stated before, behave exactly as do the planets in the solar system, describing their orbits around the positive nucleus without variations, when the atom is at rest. However, if energy is applied to this atom it begins to move in a given direction and with a speed commensurate with the energy applied. In its travel in a given direction, one or more electrons may strike an adjacent electron of a second atom and dislodge it from its orbit, thus ionizing this second atom. A physical manifestation of this phenomena may be observed when we apply energy to a vacuum tube filled with a rare gas, such as neon, and apply a potential to the electrodes. This potential is the necessary energy to cause these atoms of neon gas to travel at speeds sufficient to cause collisions of electrons, making the gas glow with its familiar red luminescence.


How Electrons Are Emitted

All substances will emit electrons when energy is applied, to a greater or lesser degree, the degree depending upon the substance. The elements that emit copious quantities of electrons as used in modern day vacuum tubes and with which we are familiar are tungsten, thoriated tungsten and oxides of strontium and barium on metal. Each of these substances has its particular use in the field of electronics, but because of the lower energy necessary to emit a certain quantity of electrons, the strontium or barium oxide coated filaments or cathodes are used in the majority as electron emitting surfaces. Due to the low operating temperatures (from 1100 to 1170 degrees Kelvin), these oxide coated cathodes are particularly suited to various applications in electronic tubes suitable for television, because at this temperature they emit very little visible light.

Electron Optics

When a number of electrons are emitted, their paths are indefinite but as these electrons are negative particles of electricity, their paths can be made to follow a given direction by attraction to a positively charged electrode; or we can form beams of these electrons by surrounding the electron-emitting cathode by a negatively charged electrode, thus repelling these electrons to form a narrow beam and then attracting this beam by the positively charged electrode mentioned previously. By suitably arranging negatively and positively charged electrodes of proper shapes and sizes we can make these electron beams behave similarly to visible light. This art is often referred to as electron optics.

Certain chemical substances, when exposed to a bombardment of an electronic stream begin to fluoresce (emit visible light). This phenomenon is taken advan-

I—Fig. I shows positive nucleus with negative electrons; 2—Analogy, the Solar system; 3— How electrons are beamed; 4—Analogy for 3; 5—Illustrating the fundamental action taking place by secondary emission in the Zwory-kin electron multiplier.

tage of in cathode-ray tubes for the interpretation of electrical energy back into light, so that our eyes may perceive and our brains interpret this phenomena into images. Many chemical substances exhibit this property. The most commonly used are zinc sulphide, zinc silicate-manganese, and cadmium tungstate. These substances fluoresce in visible light, ranging from blue for zinc sulphide to the red end of the spectrum for a combination of zinccadmium-silver compounds. These chemicals, in certain proportions, are used in present day television receiving tubes which fluoresce with an almost pure white light.

Electron Multipliers

Another phenomenon of the electronic art, that has brought television to its high present-day status, is known as secondary electronic multiplication. All of the alkali metals emit copious quantities of electrons when extremely small amounts of energy are applied to them. In a device called The Electron Multiplier, a number of electrodes are coated with these alkali metals, usually caesium. An electron emitted from the first electrode is caused to strike the second electrode with sufficient force to dislodge five or more electrons from its surface and these five or more electrons are in turn attracted by a positive charge (Continued on page 698)

LATEST INTER-PLANET NEWS

The Martian Flash

MARS-EARTH SPACE TRANSMISSION: COSMICLEAR

No. 2

MARCH, 1939

Price: None

The Martian Flash

An Inter-Stellar Magazine for all Radio Enthusiasts.

Published:—When Interplanetary Conditions Permit.

Interplanetarian Pub. Co., (Very) Ltd.

#ips-Editor

Subscription Price for All Planets— Priceless.

The Editor accepts no contributions of any kind, neither cash nor literary. This entire publication is read at your own risk. The Editor is not responsible for either the contents or your own reactions.

> Martian Office— 698743209 K K K 9 Street, Martolus, Mars.

Fips, the Office Boy, who tells us the latest happenings on Mars.

March, 1939

EDITORIAL

• FIRST of all, thanks, boys, men, and all others, for

the lovely roses and cobblestones which you were good enough to shower upon me. To say that I am overwhelmed is to put it lightly; flabbergasted would be a much better term—although the Martians would not understand it. Indeed, you cannot flabbergast a Martian, much less surprise him. A civilization with fifty million years of experience behind it cannot very well be expected to be surprised even at the most extra—super—ultra—colossal. While I have been here only a few years, I am getting so now, that I am quite immune to surprises myself. So I hope you will bear with me when I relay to you, from month to month, conditions on Mars as they exist nowadays.

Of course, I know some of you are still incredulous of all the wonders of Mars. As I unfold all the technical wonders every month, you will soon appreciate and understand that they are not half as far-fetched as you may imagine.

Just imagine, what even such a reputed wise-guy, as King Solomon with his A number one wisdom, would think if he were suddenly to come to life again on your good old earth now? And remember that only a few paltry thousand

years have intervened between Solomon and you. Then consider that the Martians have been civilized and up to date in all technical wonders for over lifty million years!

I will leave you with that thought till

THE AUTO-TRIBUNAL

By Ulysses Mohammed Fips

* Martian Star Reporter *

L AST month (of course, I refer to Earthian months—the Martian month being sixty of your Earth days) I spoke about the Auto-Science-Mech-Ultra-Tribunal. The Editors of your nagazine reported several thousand letters of you readers who wanted to know what this fearful thing is all about.

The answer is simple. Always remember that Martian Civilization is fifty million years ahead of your own. In such a civilization you naturally do not expect cops, detectives, judges, juries, and similar Earthian kindergarten stuff. The Martians haven't had any policemen for twenty million years, and such a thing as juries and judges and courts can be found only in the oldest-recorded early history of the planet Mars.

On Mars everything is geared in such a manner that no Martian can do anything out of the ordinary without its being known immediately. Thought recorders, naturally, are old-time stuff here. Originally, they were used to register all thoughts radio-mechanically,

In a few minutes I was apprehended by an automatic guard

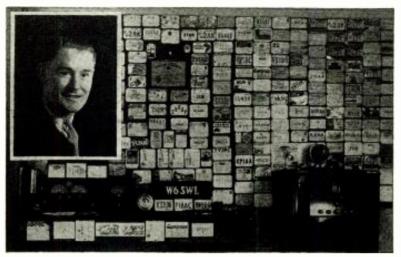
whereby the recorded thoughts came out on a moving tape. This tape in turn was fed through a second machine which either worked like a typewriter or could set up type automatically. Thus, when au Editor wanted to put his thoughts

There was a terrible commotion.... Tubes blew out, sparks played all about and general pandemonium broke loose.

down, he no longer did so by writing or dictating. He simply thought them and when he was finished thinking, he had the whole piece either typed out or printed on a sheet.

After a while, sensitive registering apparatus were designed whereby any extraordinary emotion of a Martian could be recorded, even at a great distance. From this development, it did not take very long, by utilizing other necessary refinements, to reach the stage whereby, if any extraordinary emotion took place in any one of the inhabitants. it was immediately recorded at a central recording office. The idea was not to spy on the thinking processes of the population, but rather as a sort of police duty. Suppose one Martian murdered another fellow being. The accompanying emotion would set loose a veritable tornado of radiation to be instantly recorded at the Radio-Emo Centre. By simple triangula-tion, the person was instantly spotted. and within ten seconds, the police had the culprit. This was of course, millions of years ago. Nowadays infinite refinements have been made and instead of a man being arrested for any wrong-doing, a sort of hypnotizing-paralyzing beam is directed on him. The culprit then becomes nothing but an automaton with no free will. Nowadays when we no longer have any policemen or judges, everything works automatically. This is how it works:

Let us say someone has committed a theft. The emotion let loose is instantly recorded at Headquarters. Headquarters then sends out its hypnotizing-paralyzing beam, and the culprit is directed to appear at the Auto-tribunal of his district. There are many of such Auto-tribunals throughout the planet. As the subject no longer has any free will of his own, but still can react to everything that is going


(Continued on page 695)

What Do You Think?

He Wants "Trophy" for "SWL" Shacks! Editor, I have just recently become a reader of RADIO & TELEVISION and I find it is a very constructive publication, just chock full of valuable and interesting information. Of course, being an SWL, I am most interested in Joe Miller's column, and find it both accurate and up-to-the-minute. I am also interested in the Silver Trophy Award for the best amateur station photo of the month. It would be greatly appreciated by the SWL's if they were given a chance, say every other month, to compete with the amateurs for the trophy. I am sure there are many fine looking "SWL Shacks" that would look good in

rint. What do you say to that?

I have been DXing for a good many years, but I have collected QSL's for only three years. My VAC or HAC is: Africa, 28; Asia, 35; Europe, 42; South America, 40; Oceania, 16, and North America, uncounted. My verified individual countries are 74; I have verified all continents on 20, electrically recorded all continents on 20, electrically recorded all continents on 20.

This month's Prize Winner—I yr.'s subscription to "R. & T.", goes to James E. Moore, Jr., San Francisco, Calif. His receivers are RME-69, DB-20 Pre-selector; I1-tube Philco. Verified 74 countries.

as well as the other short-wave bands. Recorded list is as follows: VK4VD, VK3ME, VR6AY, HH2X, SM5SD, KA1ZL, J2MI, ZU6P, YV1AP, ZBW3, JZJ, RV15, GSB, ZRK, ZRH, TGWA, KKH, DJB, DJQ, CEC, PRF5, Radio Mondial. The recordings of ZRK-ZRH were so well liked by the SABC they were played back to me on the SABC they were played back to me on three transmissions.

New cards received here since this photo was taken are: ES5D, G8QX, taken are: ES5D, G8QX, G5BW, G5LJ, G6NF, G6WX, G5BJ, G2TR, G3DO, CT1QG, SPD, SM5SD, HB9J, HB9CL, IRF, OE1CM, VR6AY, V K2 V V, V K 5 F L, VK3WA, VK2OG, J7CR, X U8 R B, K A 4 L H, KA1FH, J2KG, XZ2EZ, VS6AG, VS4CS, YDB, YDC, PK3GD, PK1JR, Z S5 A W, Z S 2 A F, ZS1AX, ZT6Y, ZRD, ZRJ, ZRK (6 meg.), ZRH (6 meg.), HH2S, Radio Martinique.

In my three years of reporting for QSL's, I have had excellent luck with the exception of the Australians, who I believe it is almost impossible to please. It seems there are

only a few who will QSL. They have received IRC, American Dimes, Australian Stamps, and I have even gone so far as to send them actual "recordings" of their signals. After three years I have been able to obtain only 16 cards from Australia

and the nearby islands.

JAMES E. MOORE, JR.,

Business Manager, I.D.A., Golden Gate Chapter,

3551---18 St., San Francisco, California.

He Thinks "R. & T." OK as Is

What's the matter with these fellows who are throwing "bricks" at recent RADIO & TELEVISION issues? One fellow doesn't like the cover, another does not want television articles. I do not agree with these readers. I think that the latest issues of RADIO & Television have been more interesting, and contained more news than ever before.

Dr. R. Essinger, as far as I can see, does not seem interested in learning anything about television; he seems more interested in general radio subjects. Yes, I am broadly interested in radio too, but I would like to read and study progress in television. Then Dr. Essinger also says he wants more radio circuits to be published in R. & T. Each month I find the newest and most modern radio circuits. How about conducting a vote on whether to have television articles?

Joe Miller's column is very FB and is up to the minute each month. The new VAC certificate is very handsome and I am going after mine soon. Please mention in your "mag" that I would like to correspond with listeners in Ontario, Cuba, Argentina and Mexico. All in all R. & T. is the perfect radio and television magazine. This is all for now, but what about this television topic? How about it fellows?

Мекерітн М. Stroн, Kitchener, Ont., Canada. 172 Queen St., N.,

Spiral Scanning

Editor,

Upon close study of the methods of television now in practice, namely mechanical and cathode ray types, both have faults that must be corrected before either is successful,

The scanning in both systems has followed the time worn path to form a rectangular picture. Both methods have tried interlacing the scanning lines to eliminate distortion and shadow.

I am of the opinion that right here we should try something else in scanning. What would be wrong with a round picture? Why doesn't someone try experimenting with a spiral scan, by some simple rotational cam or other method? Spir 1 scanning would do away with returning the beam to one side each time to scan the next line, etc. This method applied by some ingenious method to the cathode ray would eliminate the negative return for each succeeding line.

Before the cathode ray tube was ever used as it is now in the Iconoscope, Dissector and other tubes of this type I mentioned to many of my acquaintances that the disc method was out of the picture, as some method was out of the picture, as some means must be found to scan the image as it appeared on the glass negative in a photographer's camera which is exactly what the cathode ray tube now does. However, I do not believe this the ultimate procedure, as probably some system combining the two (mechanical and electronic) methods will eventually answer the purpose.

You might outline spiral scanning in your magazine so that some more fortunate than I can take it up and do something with it. I am sure someone will find a way. Probably a simple mechanical means will be best since the intensity of light in me-chanical systems seems greater and its adaptability to color enlargement and stereoptical methods at least practical, with less coverage of the wave band.

DARREL F. WOLFE, 1821 Thompson St., Harrisburg, Pa.,

Constructive Criticism

Editor,

I haven't commented on RADIO & TELE-VISION for quite some time, so here goes.

Where could a man find a better magazine consisting of non-boring technical articles, inside information concerning radio stations, a complete station list and etc.? Again I ask—WHERE??!!? I think the new make-up is very ultra modern-FBno disappointments whatsoever in the new changes here at this shack.

May I suggest that you put an asterisk after the author's name and a footnote at the bottom of page, giving his mailing address, so that should a reader wish to correspond with him he may do so? There have been plenty of times I would have given a lot to write to certain authors in

order to obtain a little more information. But after all—you still have a "FB" magazine and I shall continue to buy and

save them. I wish you continued success.

Joe Hester,
1430 South College,
Tulsa, Oklahoma.

(Thanks for the suggestions, Ioe, and we're working on some of the ideas. Glad you like the new make-up.—Editor.)

A "Reference Library"

Editor:

We SWL's ought to stick together as far as these Hams are concerned. I am open to any argument from the Hams and will answer all letters promptly, whether from South Africa or the Bronx. I would like to correspond with any SWL in this small world.

I have been in this short-wave game for about two years and still learn of new stations, every day. I use your magazine as
(Continued on page 684)

Getting Started in AMATEUR RADIO

C. W. Palmer, E.E., Ex.-W2BV

• HAVE you started in earnest to learn to "copy" code signals in preparation for getting your Operator's license? If so, you are probably anxious to get started making your first transmitter, so that you will be ready on that eventful day when the "tickets" arrive from the radio inspector's office to "get on the air" immediately.

The importance of sticking seriously to the job of learning the code cannot be stressed too much. This is, the stumbling block of many embryo Hams, but if you are *really scrious*, there is no reason why it should stop you from enjoying the thrills of "contacts" with other amateurs all over the world. Stick to the job!

As we promised last month, we will start right in with the construction of a phone and C.W. (code) transmitter which will meet the government's regulations and will be a good stepping stone toward the "rig" that every Ham dreams about.

Our transmitter delivers about 10 watts of power as a phone rig and up to about 20 watts for code. The units as shown in the photos compose a complete C.W. code transmitter, complete with power supply and all ready to go on the air except for a suitable antenna and antenna tuning and coupling arrangement. When this is completed we will build a modulator to permit it to be used for phone work. You will notice that the parts on the power supply are all at one end of the chassis—this is to leave room for the power supply of the modulator.

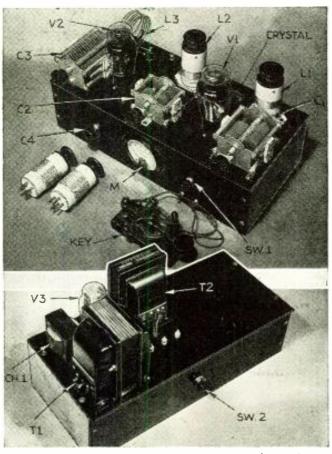
The circuit shows that the rig is quartz crystal controlled and with the coils described later and two quartz crystals it can be used on three bands—the 3.5 megacycle band for either phone or C.W., the 7 megacycle band for C.W. and the 14 megacycle band for either phone or code.

The type 59 tube is a "tri-tet" (triode-tetrode) oscillator and the 46 is a power amplifier. On the 7 and 14 megacycle bands, the oscillator is used as an "electron-coupled" device, simply by shorting out the coil L1. It can be seen that with plug-in coils and the flexibility offered by the circuit arrangement, it is an easy matter to change from one band to another.

The model shown in the photos is mounted on two bakelite panels—one for the transmitter and the other for the power supply. It is not necessary to use the bakelite panels—dry wood which has been shellacked to keep out moisture is just as good and is a lot cheaper.

It is advisable to use the best of parts where coils and condensers are concerned, as these parts will greatly affect the operation of the unit. All the sockets are isolantite wafer types—two 4-prong sockets being required for the oscillator grid and plate coils, two 5-prong sockets for the 59 tube and the quartz crystals and a 7-prong one for the 46 amplifier tube.

On 3.5 megacycles and 7 megacycles, the oscillator is used as a straight pentode, the coil 1.1 being shorted out of the circuit by means of a short length of wire, or by bending one of the end plates of C1 so that at maximum position the plates touch.


On the 14 megacycle band, quite a different mode of operation is required. Here the oscillator is a "tri-tet" unit, the cathode coil L1 being tuned to 7 megacycles or higher and the plate coil L2 being tuned to 14 megacycles. Thus, the oscillator serves the double purpose of generating the oscillations and doubling their frequency. This eliminates the need for more than 2 quartz crystals and also increases the stability of operation on the 14 megacycle band.

Mount the parts in the positions shown in the photographs, as this will prevent undesired couplings and will keep leads short. Keep all grid and plate leads as short and direct as possible and twist the filament leads to prevent a modulation hum being picked up.

No exact details for wiring the units will be given, as the wiring is quite simple and the positions of the parts can be readily seen in the photographs.

Second of o new series

How To Build a Beginner's Transmitter

Top Photo—The Beginner's Transmitter here described. Lower photo— Power supply unit.

Coil Winding

The coils are an important part of the transmitter construction and care should be used to make them as neat and strong as possible. For the oscillator grid and plate coils, isolantite plug-in forms are used which make the winding job a relatively simple matter. For the amplifier tank coil (output coil) a different mode of construction is employed. Number 12 wire is used for these two coils and they are made self-supporting by cementing strips of celluloid across the turns at three or four points around the circumference. The wire is wound on a form slightly smaller than that desired for the finished coil—about 2½ inches in our case, to make 2½ inch diameter coils. The desired number of turns are wound on and then narrow strips of celluloid are slid under the wire. Next, the turns are spaced to the desired amount with string, to make the over-all coil the desired length and to keep the turns from short-circuiting.

Next Duco cement is run between the turns onto the celluloid strips. After about an hour, the string spacers are removed and a second layer of cement is run between the turns on to the strips. After about a day, this hardens and makes the coil quite firm.

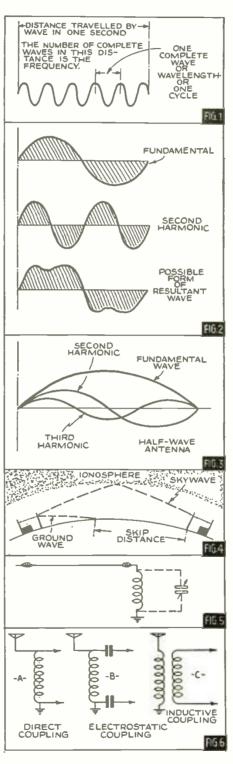
(Continued on page 681)

for March, 1939 659

Waves and Harmonics

The Radio Seginner—Lesson 5

Martin Clifford, W2CDV


• IF we were to take a piece of thin steel wire, stretch it between two points, and then pluck it, we would hear a noise of a certain pitch that we would call a sound wave. This sound wave would be due to the vibration back and forth of the wire. If we were to shorten the wire, or make it tighter, the wire would vibrate over a smaller distance, giving us an increase in pitch, due, of course, to the fact that there would be more vibrations per second. Speaking in terms of radio we would say that we have increased the number of cycles of sound waves in a given unit of time. Thus, when tightening our steel wire, we could increase the frequency, or speed of vibration, from a thousand cycles per second to ten thousand cycles per second, and we would notice the sound getting higher and higher.

Sound, Light and Radio Waves Similar.

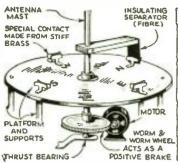
Let us assume that we can make the wire vibrate as rapidly as we wish. The pitch would increase more and more, and then we would no longer hear the sound waves, but we would begin to feel them. By placing our hand on the wire we would get the sensation of warmth, or heat waves. Increasing the frequency, the wire would get warmer until we could see a dull red color-a light wave. Thus we see that the only difference between sound waves and light waves is one of frequency of vibration, and this difference extends itself also to radio waves. The type of wave that we would get, whether radio wave, sound wave, or heat wave, would depend upon the frequency of the vibrations. With more rapid vibrations we would go from heat waves to light waves, then to ultra violet light, to X-rays, and then to gamma rays. There is no sharp dividing line between the waves of various frequencies, since the division of these waves into radio waves, light waves, sound waves, etc., is merely a matter of convenience. All the waves actually belong to one unbroken series, although they may not all be perceived or observed in the same manner, since the identifying characteristics of the waves vary as the frequency is changed. In connection with radio waves we hear the term cycle or kilocycles (thousands of cycles) and the term wavelength. Figure 1 shows the relationship between wavelength and frequency.

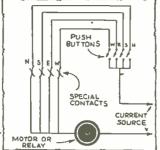
What Are Harmonics?

Referring once again to our analogy of the steel wire, we know that we can make it vibrate and produce a wave that we can identify by sound. The sound wave thus produced is not a pure wave—that is, it does not consist of just one wave, but several waves. The wave having the lowest or principal frequency is called the fundamental wave. The other waves may be double, triple, or even four times the

I—Illustrating wavelength. 2—Fundamental, second harmonic and resultant wave. 3—2nd and 3rd harmonics relation to fundamental.
 4—Sky and ground waves, also "skip distance."
 5—Loading aerial circuit with inductance.
 6—Various forms of coupling.

fundamental frequency, and are called harmonics. We might very well ask why we do not hear sounds of several different pitches at the same time, when we vibrate the wire, since we produce waves of a number of different frequencies. The answer is that the fundamental frequency and its harmonics combine to form a single wave, as shown in Figure 2. Harmonics are of importance in radio since they have a very valuable application in the field of transmitter and transmitting antenna design. It is by means of harmonics that an antenna, whether used for receiving or transmitting, is able to resonate at more than one frequency. Use of harmonics has a practical application where antenna space limitations exist. For example, an antenna to resonate at a wavelength of 40 meters should be about 132 feet (i.e., 40 meters) long, in which case it would be known as a full wave antenna. The same antenna could be used for operation even if reduced to 66 feet, or half the length, in which case it would operate as a half-wave antenna. The term is used to indicate that the antenna is resonant at one half the fundamental frequency. Note in Figure 3 that the second harmonic exists as a full wave, since it is double the frequency and that the third harmonic is a wave and a half, or three half-waves long.


Ground Waves and Sky Waves


Radio waves follow the curvature of the earth, in which case they are called ground waves, and travel outward into space, this latter component being called the sky wave. The sky wave would be useless for radio transmission were it not for the fact that about fifty miles above the earth's surface there is an ionized layer, called the Kennelly-Heaviside layer, that bends the radio waves back to earth. This layer, called also the ionosphere, is a region in which the air molecules have been ionized by radiation from the sun and presumably by radiation coming from outside our own particular solar system.

Ionization simply means that the molecules or particles of matter that constitute air have received an electric charge. This does not imply that the molecules of air retain their electric charge permanently, but that they are constantly being reionized. At night, absence of radiation from the sun causes a sharp decrease in the amount of ionization, with the result that a variation in transmission and reception is usually experienced. The point at which the wave is returned to earth depends on the wavelength of transmission. For example, waves in the broadcast band (of several hundred meters) are generally directed back to the area around the transmitter. However, as we get down to short waves, the sky wave will not return to the

(Continued on page 701)

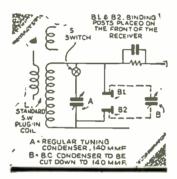
First Prize Winner

Motor-Driven Rotating Antenna

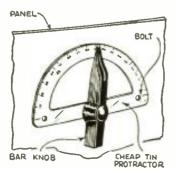
This is a means for electrically controlling the direction of a beam or loop antenna which is mounted at a point remote from the control panels. Parts needed are: 8 specially made contacts, 4 switch buttons, a motor with a worm drive, and the usual mast which is mounted on a thrust bearing, as the accompanying sketch shows.

The worm drive acts as a brake, eliminating back-lash and making the antenna stop positively in the correct position. The only detail which must be given special care is to make sure that the contacts are perfectly aligned and that the arm which breaks the contacts is accurately positioned.

As a reference to the illustration shows, each circuit is completed by pressing the corresponding button (West, East, South or North), and is broken only when the insulating separator gets between the two contacts as the antenna is rotated. All the other circuits may be completed, despite the fact that one pair of contacts is open. The antenna automatically stops in the desired position. Pressing the same button twice will not change the antenna's position but pressing any of the other buttons will cause it to rotate until it reaches the new position which is wanted.


Pilot lights may be arranged to show the position of the antenna but these are omitted for the sake of simplicity in the drawings.—William L. Teter.

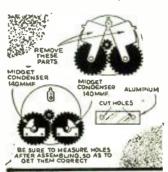
180-Degree Dial Scales for 10c.


Small protractors, such as are sold in the ten-cent store, make excellent scales for radio dials. A protractor is mounted on the panel with the shaft of the control at its center point. A bar knob slipped onto the shaft cnables the user to read the control setting on the scale of the protractor. —Louis Massagetti.

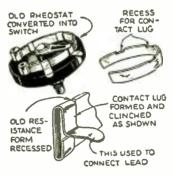
Cutting Condensers 1

When broadcast condensers must have their capacity decreased for short wave use, it is always hard to tell when enough plates have been removed to make them of 140 mmf. capacity for use with standard short wave coils. In the accompanying sketch, you will see how the condenser under test is connected to a pair of binding posts across a short wave tuning condenser which is in series with a switch. The

process is to tune in the station with the regular short wave condenser, then to open the switch so that the broadcast condenser is in the circuit until the station is again heard with the plates of both condensers about equally meshed. Tuning is accomplished first with one condenser and then the other, until the condenser being rebuilt covers the same frequency range as the standard. If the plates are removed by being bent back and forth until they break off, instead of by unscrewing the condensers and nuts, the job can be quickly and easily performed. -Eldon Meredith.



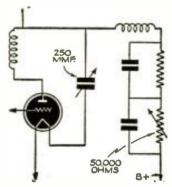
Radio Kinks


Each month the Editor will award a 2 year subscription for the best kink submitted. All other kinks published will be awarded eight months' subscriptions to RADIO & TELEVISION. Look over these kinks; they will give you some idea of what is wanted. Send a typewritten or ink description with sketch of your favorite to the Kink Editor.

Ganging Trimmers

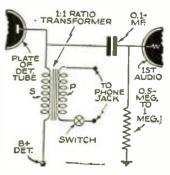
If one of the old Remler condensers is in the odd parts box

it may be rebuilt into a vernier gang control for two midget condensers. The sleeves on which the Remler plates are mounted are sawed off, leaving about 1" remaining. Then the posts on which these sleeves turn are cut to about 1/2" in length. The shafts of the midget condensers are slipped into the sleeves. The midget condensers themselves are mounted to a piece of sheet aluminum, much as they would normally be mounted on a panel. Finally, the sleeves are soldered to the rotor shafts of the midget condensers. -W. F. Rouse.



Multi-pole Switch

A simple multi-pole switch can be made from an old rheostat at no cost whatsoever. The resistance element is removed from the rheostat and brass strips are positioned over the insulating material which formerly formed a core for the resistance wire. If this insulating material is notched to take the strips of brass, the arm will fall into position and thus enable the operator to feel when each contact is being made. — Einar Nelson.


Double Regeneration Control

Regeneration is usually controlled by connecting a potentiometer to the plate of the detector, or by using a variable condenser between the tickler and ground. Better results, however, are obtained by coupling both condenser and potentiometer in the detector circuit. Regeneration is very smooth and easy to control, and is especially suitable for s.w. receivers because of the system's wide applicability to the different coils. The condenser is first adjusted to produce regeneration, and then the potentiometer, as usual.-Han Pao Hsuan.

Transformer for Phones

When connecting phones in the detector output stage of a resistance-coupled receiver, there is danger of burning them out when they are simply broken into the circuit. This is particularly true when crystal phones are used. However, by substituting the primary of a one-to-one ratio transformer for the coupled resistor in the detector plate circuit and connecting the phones across the secondary, this is prevented.—D. Grossenbacher.

World Short Wave Stations

Revised Monthly

Complete List of SW Broadcast Stations

Reports on station changes are appreciated.

Mc.	Call		Mc.	Call		Mc.	Call	
31.600	WIXKA	Westinghouse Co. Daily 6 am1 am., Sun. 8 am1 am. Relays	21.450	DJS	BERLIN, GERMANY, 13.99 m., Addr., Broadcasting House. 12.05-5.30 am.	15.310	GSP	DAVENTRY, ENG., 19.6 m., Addr. (See 17.79 mc.) 3-5.15 am., 1.45-4 pm.
31.600	WIXKB	WBZ. SPRINGFIELD, MASS., 9.494 m.,	19.020	HS6PJ	BANGKOK, SIAM, 15.77 m. Mon-	15.300	YDB	SOERABAJA, JAVA, N. E. I. 19.61 m. Addr. NIROM, 7.30 pm2 am.
		Addr. Westinghouse Co. Daily 6 am1 am., Sun. 8 am1 am. Relays WBZ.	18.480	нвн	days 8-10 am. See 15.23 mc. GENEYA, SWITZERLAND, 16.23 m., Addr. Radio Nations. Sun., 10.45-	15.300	XEBM	MAZATLAN, SIN., MEX., 19.61 m., Addr. Box 78, "El Pregonero del Pacifico." Irregularly 9-10 am.,
31.600	W3XEX	WFBR 4 pm-12 m. Relays			11.30 am,	15 300	20.05	1-2, 8-10 pm.
31.400	W2XDV	NEW YORK CITY, 9.494 m., Addr.	16	Mas	. Broadcast Band	15.300	2RO5	ROME, ITALY, 19.61 m., Addr. (See 2RO, 11.81 mc.) 11:15 am12.15,
		Col. Broad. System, 485 Madison Ave. Daily 6-11 pm.; Sat. and	17.845		VATICAN CITY, 16.81 m. Heard	15.290	LRU	2-4 pm. SUENOS AIRES, ARG., 19.62 m.,
31.400	W9XHW	Sun. 1.30-6, 7-10 pm. MINNEAPOLIS, MINN., 9.494 m.	17,840		12 n. on Wednesday.			Addr. El Mundo. Relays LRI, 7-9 am.
31.400	W3XKA	Relays WCCO 9 am12 m. PHILADELPHIA, PA., 9.494 m., Addr, NBC. Relays KYW 9 am,-	17,820		BERLIN, GERMANY, 16.82 m., 10.35 am1 pm. ROME, ITALY, 16.84 m., Addr. (See	15.280	D1Ô	BERLIN, GERMANY, 19.63 m., Addr. Broadcasting House, 12.05- 11 am., 4.50-10.50 pm. Also Sun.
31.400	W5XAU	OKLAHOMA CITY, 9.494 m., Sun.	17.010	664	2RO, 11.81 mc.) Relays 2RO to 6 pm. irregularly.	15,270	нізх	il.10 am12.25 pm. CIUDAD TRUJILLO, D. R., 19.65
		12 n-1 pm., 6-7 pm. Irregular other times.	17.810		DAVENTRY, ENGLAND, 16.84 m., 5.45-8.50 am., 12.20-4 pm.			m. Relays HIX Sun. 7.40-10.40 am. Tues, and Fri. 8.10-10.10 pm.
31,600	W4XCA	MEMPHIS, TENN., 9.494 m. Addr. Memphis Commercial Appeal.	17.810		PARIS, FRANCE, 16.84 m. Addr. (See 15.245 mc.) 9.30-11 am.	15.270	W3XAU	PHILA., PA., 19.65 m. (Addr. See 21.52 mc.) 3-7 pm.
31,600	W8XAI	Relays WMC. ROCHESTER, N. Y., 9.494 m., Addr.	17.800	TGWA	M., Addr. Ministre De Fomento.	15.270	W2XE	NEW YORK CITY, 19.65 m., Addr. (See 21.570 mc.) 1-3 pm. Sat. &
		Stromberg Carlson Co. Relays WHAM 7.30-12.05 am,	17.790	ese	DAVENTRY, ENG., 16.86 m., Addr.	15 240	CSI	Sun 1.30-2.30 pm.
31.600	W8XWJ	DETROIT, MICH., 9.494 m., Addr.			B.B.C., London, 5.45 am10.15 am., 12.20-4 pm.	15.260	931	DAVENTRY, ENG., 19.66 m., Addr, (See 17.79 mc.) 3-5.15 am., 12.20-
31.400	1	Evening News Ass'n, Relays WWJ 6-12.30 am., Sun. 8 am-12 m.	17.785	JZL	TOKYO, JAPAN, 16,87 m. 8-8.30	15.250	WIXAL	BOSTON, MASS., 19.67 m., Addr.
31,600	W9XPD	ST. LOUIS, MO., 9.494 m., Addr. Pulitzer Pub. Co. Relays KSD.	17.780	W3XL	BOUND BROOK, N. J., 16.87 m., Addr. Natl. Broad. Co., 9 am			University Club, Tues., Thurs. 4.30-6.30 pm.
26.550	W2XGU	NEW YORK CITY, 11.3 m, Relays WMCA.			5 pm. to Europe, 5-11 pm. to So.	15.245	TPA2	PARIS, FRANCE, 19.68 m., Addr. 98 Bis, Blvd. Haussmann. "Paris
26.450	W9XA	KANSAS CITY, MO., 11.33 m., Addr. Commercial Radio Egpt, Co. Testing	17,770	PH12	HUIZEN, HOLLAND, 16.88 m., Addr. (See PHI, 11.730 mc.) Daily	15.230	HS6PJ	Mondial" 6-11 am. BANGKOK, SIAM, 19.7 m. Irregu- larly Mon. 8-10 am.
26.400	W9XAZ	MILWAUKEE, WIS., 11.36 m.,			7.25-8.25 am. Tues, and Thurs., 7.25-8.40 am., Sun. 6.25-9.40 am.	15.230	OLR5A	PRAGUE, CZECHOSLOVAKIA, 19.7
24 300	MOVII	Addr. The Journal Co. Relays WTMJ from I pm.	17.760	DJE	Addr. Broadcasting House. 12.05-			m. Addr. (See OLR4A, 11.84) MonFri. 7.50-10.55 pm. Sat., and Sun. 5-5.15 pm., Sun. 5.55-
40.300	W2XJ1	NEW YORK, N. Y., 11.4 m., Addr. Bamberger Broad, Service, 1440	17.755	ZBW5	5.50, 6-7.50 am. HONGKONG, CHINA, 16.9 m.	1.5 222	00.10	8.55 pm., Tues. 4.40-5.15 pm.
		Broadway, Relays WOR 12 n 6 pm.			HONGKONG, CHINA, 16.9 m., Addr. P.O. Box 200. Dly. 11.30 pm1.15 am., 5-10 am., Sun. 9	15.220	PCJ2	Addr. N. V. Philips' Radio Hil-
	W9XJL	SUPERIOR, WIS., 11.49 m. Relays WEBC daily.	ŀ		pm. (Sat.)-1.30 am., 5-9.30 am. Operates irreg.			versum. Tues. 2-3.30 am., Wed. 9.30-11.30 am. Daily 7.25-8.25 am.
26,050	W9XTC	MINNEAPOLIS, MINN., 11.51 m. Relays WCTN 9 am1 pm., 7 pm		=== Enc	d of Broadcast Band	15.210	W8XK	PITTSBURGH, PA., 19.72 m., Addr. (See 21.540 mc.) 9 am1 pm,
26.050	W9XH	12 m.	17.310	W2XG8	HICKSVILLE, L. I., N. Y., 17.33 m.,	15.200	DJB	BERLIN, GERMANY, 19.74 m., Addr. (See 15.280 mc.) 8-9
		SOUTH BEND, IND., 11.51 m. Addr. South Bend Tribune. Re- lays WSBT-WFAM 2.30-6.30 pm.,			Addr. Press Wireless, Box 296. Tests 9.30-11.30 am. except Sat.			am., 4.50-10.50 pm. Also Sun. 11.10 am12.25 pm.
25.950	W6XKG	exc. Sat. and Sun.	17.280	FZE8	and Sun. DJIBOUTI, FRENCH SOMALI-	15.195	TAQ	ANKARA, TURKEY, 19.74 m., 5.30- 7 am., 9.30-11 am., Relays 2RO
2300	WOARO	LOS ANGELES, CAL., 11.56 m., Addr. B. S. McGlashan, Wash. Blvd. at Oak St. Relays KGFJ			LAND, 17.36 m. Test XMSN 1st Thurs. each month 8-8.30 am. Next B.C. Feb. 2.	15.190	_	irregularly Afts. ROME, ITALY, 19.75 m. Relays 2RO
25.950	W9XUP	24 hours daily, ST. PAUL, MINNESOTA. 11.56 m.	15.550	CO9XX	m., Addr. Frank Jones, Central	15.190	OFO	till 6 pm., irreg. LAHTI, FINLAND. 19.75 m. Addr,
21.630	W3XAL	Relays KSTP evenings. BOUND BROOK, N. J., 13.8 m.			Tuinicu, Tuinicu, Santa Clara. Broadcasts irregularly evenings.			(See OFO, 9.5 mc.) 1-3 am., 9 amn., 12.15-5 pm, Irreg.
		Addr. N.B.C., N. Y. C. 9 am4 pm.	15.510	XOZ	CHENGTU, CHINA, 19.34 m. Daily 9.45-10.30 am.	15.190	ZBW4	HONGKONG, CHINA, 19.75 m., Addr. P. O. Box 200. Irregular.
21.570	W2XE	NEW YORK CITY, 13.91 m. (Addr. CBS, 485 Madison Ave., N. Y. C.	15.370	HAS3	BUDAPEST, HUNGARY, 19.52 m.,	£5.180	650	11.30 pm. to 1.15 am., 3-10 am. DAYENTRY, ENG., 19.76 m., Addr.
		Daily 7.30-10 am. Sat., Sun. 8 am1 pm.			Addr. Radiolabor, Gyali Ut 22. Sun. 9-10 am.	13.160	930	(See 17.79 mc.) 4.15-6, 6.20-8.30 p.m.; 3-5.15 am.
21.565	DJJ	BERLIN, GERMANY, 13.92 m., Addr. Broadcasting House, 6-7.50	15.360	DZG	ZEESEN, GERMANY, 19.53 m., Addr. Reichspostzenstralamt. Tests irregularly.	15.175	RW96	MOSCOW, U.S.S.R., 19.76 m. Mon., Tues., Fri., Sat. 2.30-3.30 pm. Daily 3-4 am. Mon., Wed.,
21.550	GST	DAVENTRY, ENG., 13.92 m., Addr. (B.B.C., London) Irregular at	15.360	_	BERNE, SWITZERLAND. 19.53 m. trreg. 6.45-7.45 pm.	15.170	TGWA	pm. Daily 3-4 am. Mon., Wed., Thurs. 7-9.15 pm. GUATEMALA CITY, GUAT., 19.77 m., Addr. (See 17.8 mc.) Daily
21.540	W8XK	PITTSBURGH, PA., 13.93 m., Addr.	19	Mot.	Broadcast Band			m., Addr. (See 17.8 mc.) Daily 12,15-1.45 pm.; Sun. 12.45-5.15 pm.
		Grant Bldg. Relays KDKA 6.45-9 am. Also Sunday. 6 pm.	15,340		BERLIN, GERMANY, 19.56 m.,	15.165	OZH	SKAMLEBAK, DENMARK, 19.78 m., Sun. 8 am1.30 pm.
21.530	e 21	DAVENTRY, ENG., 13.93 m., Addr. (See 21.550 mc.) 5.45-8.50 am.			Addr. Br'dcast'g House, 12.05- 11 am.	15.160	XEWW	MEXICO CITY, MEXICO, 19.79 m., 12 n12 m., irregular.
21.520	UAXEW	PHILA. PA., 13.94 m., Addr. Col. Broad. Syst., 485 Madison Ave., N. Y. C. 1-2.30 pm.		W2XAD	SCHENECTADY, N. Y., 19.56 m., Addr. General Electric Co. Re- lays WGY, 12.15-7 pm.	15.160	JZK	TOKYO, JAPAN, 19.79 m. 12.30- 1.30 am., 2.30-4, 4.30-5.30, 8-8.30
21.500	W2XAD	SCHENECTADY, N. Y., 13.95 m.,	15.320	OLR58	PRAGUE, CZECHOSLOVAKIA.	15.160	VUD3	DELHI, INDIA, 19.79 m., Addr. All
21.470	esh	General Electric Co., 8 am12 n. DAYENTRY, ENG., 13.97 m. (See			Sun., Wed., Sat. 5-5.10 pm.: Mon., Tues., Thurs., Fri. 6.55-9.55			India Radio. 1,30-3,30 am., 9,30- 11,30 pm.
		21.550 mc.), 5.45 am12 n,			pm.		(C	ontinued on page 664)

TO RADIO W2-XJM

H, YONEDA 652/2 I-CHOME DAITA MR. JOSEPH H. MILLER SETAGAYA-KU TOKIO JAPAN

YOUR REPORT CM. THIS CONFIRMS OUR OSO OF 3 RD. APRIL 1938 ATO 8581.01.71. UR 20 M, MG PHONESICS RST CONDX

ARRL **JARL**

XMTR: XTAL CONT.

INPUT FINAL WTS

MOD: CLASS B 'S RCVR:

ANT:

TKS FER FB OSO OM! HPE TO CUACH! PSE TNX OSL!

73'S ES DX!

J2NG-A plain but valued veri of a 20 meter Japanese amateur phone.

> J2NG - In person. "OM" Harry shows his DX layout, which 'push out" those FB phone sigs all over the world.

Let's Listen In

Loe Miller

CERTAINLY there is no other time of year when background noise is so lacking in evidence, and with many distant signals coming in as never before, combined with a lack of noise, well—what more could anyone ask? Commercial fones, SWBcers, and our ever-reliable amateurs are a pleasure to log, especially the latter ever-growing class of transmitters, whose stations are being heard in this country from all parts of the world, even New Zealand hams on 80 meter fone have been logged on the West Coast! This season was always the DX season, even in the old days of '24-'25, when the famous trans-Atlantic BCB tests were successfully concluded, and with what fond memories do we hark back to those days.

When this issue is published. Spring will not be far off and that is the season when the experienced SW DXer knows he will "clean up" on amateur DX, especially, if not mainly, on 20 meters. So, fellow DXers, look for our DX "dope" in the next issue, which will show you how to get the most from your tuning time during March and April on the ham bands.

Incidentally, and quite an incident, we sez, we have been assured that the new Hallicrafters Dual Diversity will be delivered to us for a two months' DX test, beginning March 1, so you can be sure we look forward to a lively time in DXing this Spring! Thanks to Mr. Durst of Hallicrafters, Inc., for this FB courtesy, and we will consider it a privilegie to be able to report to you the expected superlative performance of this receiver.

Now for DX:

IRAO

YIJG, 7.20 mc., at Baghdad, mentioned here last month as a difficult DX catch for U. S. tuners. was "dug out" from the 40 meter amateur band QRM one recent afternoon, just before their 3 p.m. sign-off, and luckily, sufficient program was heard to permit writing for a confirmation. Erroneously, we stated Iraq as former Persia, when Persia is now known as Iran. a rather similar name! Iraq was formerly called Mesopotamia. YIJG may still be heard up to as late as mid-April, providing the noise-level and QRM conditions in the 40 meter band permit. Full details in last issue.

FRENCH INDO-CHINA

Radio Hanoi II, 11.90 mc., located at Hanoi, with a power of 100 watts, has already OSL'd Murray Buitekant's report with a letter and gave our W2 friend DXer some FB data, via a native radio magazine published by the Radio Club D'Indo-Chine, which they sent to Murray.

There are 3 transmitters operating in Hanoi at present: Radio Hanoi II, 915 mc., with 15 watts; Radio Hanoi II, 11.90 mc., with 100 watts; and Radio-Volonté, on 7.10 mc., no power listed. Schedules are as follows: Radio Hanoi I, daily 11 p.m.-2:30 a.m. and 6-9:30 a.m., Sundays, when it starts at 7:30 p.m. to 10:30 p.m. Sat. night, and from 11 p.m. Sat. to 9:30 a.m. Sun. a.m. Radio Hanoi II, daily 12 mid.2:30 a.m. and 6-9:30 a.m. and Sundays, when it also starts Sat. night 8:30-10:30 p.m., then midnight-5 a.m., Radio Volonté operates every day from midnight to 2 a.m., not very promising.

ORA's for these stations follow: R.H.I, 82 Rue Jules Ferry. Hanoi. R.H. II, 32 Rue de la Pepiniere. Hanoi. Radio Volonté: 15 Bd. Hollandes, Hanoi.

Radio Hanoi II may be heard fairly well on good days, for East Coast, on their last transmission after 6 a.m. when they came in rather well last month. The famous French amateur. Rene Lebon. F18AC. whose nice QSL appeared here recently, is the constructor of both Radio Hanoi transmitters and deserves a big hand for his fine encouragement of short wave radio in the Far East. Thanks to Murray Buitekant for his FB help. Bob Sawada, W6. reports a veri of Boy-Landry, 9.76 mc., adding that QRA given here was OK. FB. Bob!

CHINA

CHINA

XPSA is the correct call of that Chinese station located at Kweiyang, mentioned last month, and frequency is given as 7.14 mc., though heard on 7.00 mc., according to a dispatch relayed here from Han Pao Hsuan, of China. tnx, OM!

The schedule given by Mr. Hsuan for XPSA is as follows: 9-10 p.m., 2:30-3:30 a.m., 9:50-11:50 a.m., which, however, does not check with previous listed schedules. As every schedule we get lists XPSA differently, we believe the LD.A. schedule here last month is most likely to be correct.

G. C. Gallagher, W6, hears XPSA on 6.98-7.00 mc. around 9 a.m. This station desires reports on reception, addressed to Kweiyang, Kweichow Province, China.

XGRV. 11.40 mc., approximate, at the war-time capital. Chungking, is being heard 1-1:35 and 8-8:35 a.m. daily, when news is given, at 1 a.m. in Japanese and Chinese, and at 8 a.m. in French and English, Jack Wells, W4, has received a letter from Hollington K. Tong. Chairman of China Information Committee, Hankow, with this data, also mentioning that XTJ has been moved into the interior to avoid the bombing of the enemy. Don Williams, W6, reports XGSA.

INDIA

The Indian BC transmitters on or near 5.00 mc., have astonished the SW world by their amazing signal strength daily, being heard throughout the U. S. with always easily logged signals, during normings.

One may hear all of these 10 kw. transmitters within a short span on the dial. from 4.88 to 4.995 mc., and, when this news is read, it will still be possible, we hope, to be able to get a log on these real DX catches, on such an unusual low frequency.

these real DX catches, on such an unusual low frequency. VUC2, 4.88; VUB2, 4.905; VUM2, 4.95; and VUD2, 4.995 mc., are logged in that order, from 7 a.m. on through the a.m.'s. The last letter of each call indicates the city, as VUC2. Calcutta. Other cities are Bombay, Madras and Delhi. Address reports to Station Director, All India Radio, and then whatever station and city heard. India. VWY2, 17.48 mc. Poona, was recently logged at 7:30 a.m., with a FB signal, foning Rugby, England. Inverted speech used on both stations.

ASIATIC REVIEW

ASIATIC REVIEW

TAIWAN—(Formosa) JIB, 10.53 mc., Taihoku, reported by G. C. Gallagher, W6, at 2 and 10 a.m., also here at 3:20 a.m. W6, at 2 and 10 a.m., also here at 3:20 a.m. w6.9:05 a.m. (I.D.A.)

Has chimes similar to NBC.

FED. MALAY STATES—ZGE, 6.24 mc., Kuala Lumpur, reported off the air, has been taken over by the Govt. and is relaying the programs of ZHP, at Singapore.

U.S.S.R.—RV15. Khabarovsk, reported last month on 6.045 mc., has again returned to their ol' reliable 4.275 mc. spot on the dial.

OTHER DX

TAHITI-FO8AA, 7.10 mc., Papeete, in the South Seas, is beginning to be well heard on their usual (Continued on page 697)

ZL3KZ -- This outstanding .card .in orange-yellow, with red letters, confirms 10 meter phone reception.

_								
Mc.	Call SM5SX	STOCKHOLM SWEDEN 10.70	Mc.	Call	BARIS FRANCE OF DA	Me.	Call	
13.188	3M33V	STOCKHOLM, SWEDEN, 19.79 m., Daily II am. 5.pm., Sun. 9 am. 5 pm.	11.844	TPB7	PARIS, FRANCE, 25.24 m. (See 15.245 mc.) 9.30 pmmid., 12.15- 2 am. Irregular.	II	CJRX	WINNIPEG, CANADA, 25.6 m.,
15.150	YDC	BANDOENG, JAVA, 19.8 m., Addr. N. I. R. O. M. 6-7.30 pm., 10.30 pm2 am., Sat. 7.30 pm2 am.,	11.880	VLR3	MELBOURNE, AUST., 25.25 m., 3.30-7.15 pm., 9 pm3 am. week-days.		- MPTIALI	Ltd. Daily 6 pm12 m., Sun. 5- 10 pm.
15.140	esf	daily 4.30-10.30 am. DAVENTRY, ENG., 19.82 m., Addr. (See 17.79 mc.) 3-5.15 am., 5.45		WBXK	PITTSBURGH, PA., 25.26 m., Addr. (See 21.540 mc.) 1-11 pm. BERNE, SWITZERLAND. 25.28 m.	11.710	Cr.::BH	LAURENCO MARQUES, PORTU- GUESE E. AFRICA, 25.6 m. Daily 12.05-1, 4.30-6.30, 9.30-11 am., 12.05-4 pm., Sun. 5-7 am., 10 am.
15.130	TPB6	PARIS, FRANCE, 19.83 m., Addr. "Paris Mondial," 98 Bis Blvd.			Irreg. 8-9 pm. to No. Amer.	11.715	TPA4	2 pm. PARIS, FRANCE, 25.61 m., (See 15.245 mc.) 7-9.15 pm., 9.30 pm.
15.130	WIXAL	BOSTON, MASS., 19.83 m., Addr. World-Wide B'cast'g Founda-	11.855	GSE	DAVENTRY, ENG., 25.29 m., Addr. (See 11.75 mc.) 3-5.15, 5.45 am 10.30 am.	11.710	MZY	12 m. to No. America. \$AN \$ALVADOR, EL SALVADOR,
15.120	SP19	tion. University Club. 10-11 am., MonFri. Sun. 10 am1 pm. WARSAW, POLAND, 19.84 m., 6-9			BERLIN, GERMANY, 25.31 m., Addr. (See 15.280 mc.) Irregular. 7.15-10.50 pm. for No. Amer.	11.710	-	25.63 m., Addr. (See 7.894 mc.) 1-2.30 pm. SAIGON, FRENCH INDO-CHINA. 25.62 m., Addr. Boy-Landry, 17
15.120	HVJ	vatican city, 19.83 m., 10.30- 10.45 am., Tues only. Suns. 1-1.30	H	KZRM	MANILA, P. I., 25.35 m. Addr. Erlanger & Gallinger, Box 283. 9 pm10 am. Irregular.	11.705	SBP	Place A Foray. 7.30-9.15 am. MOTALA, SWEDEN, 25.63 m., 1.20- 2.05, 6-9 am., 11 am1 pm., Sat.
15.110	DJL	pm. BERLIN, GERMANY, 19.85 m., Addr. (See 15.280 mc.) 12.05-2.		CSW	LISBON, PORT., 25.35 m. Nat'l Broad. Station. 11.30 am1.30 pm. Irregular.			1.20-2 am., 6 am1.30 pm., Sun. 3 am1.30 pm. Wed. and Sat. 8-9 pm.
15.080	RKI	8-9 am., 10.35 am4.25 pm., Sun., also 6-8 am. MOSCOW, U.S.S.R., 19.87 m.	11.840	OLR4A	m., Addr. Czech Shortwave Sta., Praha XII, Fochova 16. Daily	11.700	HP5A	PANAMA CITY, PAN., 25.65 m. Addr. Radio Teatro, Apartado 954, 10 am1 pm., 5-10 pm. Sun.
		Works Tashkent near 7 am. Broad- casts Sun. 12.15-2.30 pm. Daily 7-9.15 pm.	11.830	W9XAA	1.55-4.30 pm. Mon. to Fri. 7.55- 10.55 pm., Sun. 5.55-8.55 pm. CHICAGO, ILL., 25.36 m., Addr. Chicago Federation of Labor.	11.700	CB1170	6-10 pm. SANTIAGO, CHILE, 25.65 m. Addr. P.O. Box 706. Relays CB89 10
_	En	d of Broadcast Band	11.830	W2XE	NEW YORK CITY, 25.36 m., Addr.			am2 pm., 3.30-11 pm.
14.960	_	MOSCOW U.S.S.R., 20.25 m., 1st of month, 6 pm. Dutch program.		/	Col. Broad. System, 485 Madison Av., N.Y.C. MonFri. 3.30-6,		E	nd of Broadcast Band
14.940	PSE	RIO DE JANEIRO, BRAZIL. 20.08 m., Broadcasts Wed. 3.45-4.15	11.826	XEBR	6.30-10 pm. Sat., Sun. 3-6, 6.30- 11 pm. HERMOSILLA, SON., MEX., 25.37	11.676	* 10-	ROME, ITALY. 25.7 m. Relays 2RO 1.35-2.25, 6-9 pm.
14.600	JVH	pm. NAZAKI, JAPAN, 20.55 m. Broad-			m., Addr. Box 68. Relays XEBH. 9.30-11 am., 1-4 pm., 9 pm12 m.		SPD ;	WARSAW, POLAND, 26.01 m., Addr. 5 Mazowiecka St. 6-9 pm.
14 535		Casts irregularly 5-11.30 pm. Works Europe 4-B am.	11.820	G SN	DAVENTRY, ENG., 25.38 m., Addr. (See 11.75 mc.) Irregular.	11.402	НВО	GENEVA; SWITZERLAND, 26.31 m., Addr. Radio Nations. Sun, 7-7.45 pm., Mon. I-1.15 am., 7-8.30 pm.
14.535	нал	GENEYA, SWITZERLAND, 20.64 m., Addr. Radio Nations. Broadcasts Sun. 1.45-2.30 pm., Mon. 1.30-1.45 pm.	11.810	2RO4	ROME, ITALY, 25.4 m., Addr. E.I.A.R., Via Montello 5. Daily 4.40-8.45 am., 10 am12 n.	11.040	CSW2	LISBON, PORTUGAL, 27.17 m., Addr. Nat. Broad. Sta. 9.30 am., Noon. 2-5.30 pm.
14.440	-	Relays. Salamanca 5.40-8.40 am. Sometimes 2-4 pm.	11.805	COOF	MATANZAS, CUBA, 25.41 m., Addr. Gen. Betancourt 51. Re- lays CMGF. 2-3, 4-5, 6-11 pm.	11.000	PLP	BANDOENG, JAVA, 27.27 m. Re- lays YDB, 6-7.30 pm., 10.30 pm 2 am., 4.30-10.30 or 11 am. Sat.
14.430	HCIB	QUITO, ECUADOR, 20.79 m. Sun. 19-9.30 pm. and irreg.	11.805		SKAMLEBOAEK, DENMARK, 25.41 m. Addr. Statsradiofonien. Irreg.	10.950		until 11.30 am. TANANARIYE, MADAGASCAR,
14.166	PIIJ	DORDRECHT, HOLLAND, 21.15 m., Addr. (See 7.088 mc.) Set. 12 n12.30 pm.	108.11		BERLIN, GERMANY, 25.42 m. 4.50- 10.50 pm. TOKYO, JAPAN, 25.42 m., Addr.		0.0	27.40 m., Addr. (See 9.38 mc.) 12.30-45, 10-11 am., 2.30-4 am., exc. Sun.
14.004	EA9AH	TETUAN, SPANISH: MOROCCO, 21.4 m. Apartado 124. News at 4.30 and 7.15 pm. Relays Sala-			Broadcasting Co. of Japan, Overseas Division. 7-7.30, 8-9.30 am., 2.30-4, 4.30-5.30, 8-8.30 pm., 12.30-1.30 am.	10.670		SANTIAGO, CHILE, 28.12 m. Irregular. NAZAKI, JAPAN, 28.14 m. Broad-
13.635	SPW	manca from 5.40 pm. WARSAW, POLAND, 22 m. Daily 6-8 pm. Sat. & Sun. 6-9 pm.	11.795	DJO	8ERLIN, GERMANY, 25.42 m. 4.50- Addr. (See 15.280 mc.) 11.30 am4.25 pm., 4.50-10.50 pm. Ir-	10.600	ZIK2	casts daily 1.50-7.40 am. Works Europe irregularly at other times. BELIZE, BRIT. HONDURAS, 28.30
12.862	W9XDH HC2JB	ELGIN, ILL., 23,32 m. Press Wireless, Tests 2-5 pm. QUITO, ECUADOR, 24.08 m. Daily	11.790	WIXAL	regular. BOSTON, MASS., 25.45 m., Addr. (See 15.250 mc.) Daily 4,55-6,30	10.535	JIB	m., Tue., Thurs., Sat. 1.30-2, 8.30-9 pm. TAIHOKU, TAIWAN, 28.48 m. Works Japan around 6.25 am.
12.235		exc. Mon. 8-10.30 pm. REYKJAVIK, ICELAND, 24.52 m. Works Europe momings, Broad-	11,780	HP5G	pm., Tues., Thur., 4.40-6.30 pm., Sat. 1.45-6 pm., Sun. 5-6.30 pm. PANAMA CITY, PAN., 25.47 m.,	10.400	YSP	Broadcasts, relaying JFAK 9.05-10 am., 1-2.30 am. Sun. to 10.15 am. SAN SALVADOR, EL SALVADOR,
12.200		casts Sun. 1.40-2.30 fgm. TRUJILLO, PERU, 24.58 m., "Rancho Grande." Address Hacienda	11.780	OFE	Addr. 8ox 1121, 8-11 pm. LAHTI, FINLAND. 25.47 m. Addr. (See OFE, 9.5 mc.) 1.05-3 am.,	10.350		28.85 m., 1-3, 6.30-11 pm. BUENOS AIRES, ARG., 28.98 m., Addr. Transradio International.
12.060	RNE	MOSCOW, U.S.S.R., 24.88 m. Daily	11.770	DJD	5-6.20, 10 am12.30 pm. BERLIN, GERMANY, 25.49 m. Addr. (See 15.280 mc.) 11.30 am	10.330	ORK	Tests irregularly. RUYSSELEDE, BELGIUM, 29.04 m. Broadcasts 12.30-2 pm. Works
		6-7 am., 12 n2 pm., 3-6, 10.15-11 pm., also Tues., Thurs. 8.30-9 pm., also Sun. 6-10.30 am., 12 n 5 pm., 6-6.30, 8.30-9, 10.15-11 pm.	11.760	TGWA	4.25 pm., 4.50-11 pm. GUATEMALA CITY, GUAT., 25.51 m. (See 17.8 mc.) trregular 10-	10.290	TIEMT	OPM I-3 am., 3-5 pm. SAN JOSE, COSTA RICA, 29.15 m., 4.30-8 pm.
11.970	H12X	CIUDAD TRUJILLO, D. R., 25.07			11.30 pm. Sun. 6-11.30 pm., ir- regular.	10.290	DZC	ZEESEN, GERMANY, 29.16 m., Addr. (See 15.360 mc.) Irregular.
		Relays HIX Tue, and Fri. 8.10- 10.10 pm.	11.760	XETA	MONTEREY, MEX. 25.51 m., Addr. Box 203. Relays XET, n3.30 pm. and evenings.	10.260	PMN	BANDOENG, JAVA, 29.24 m. Re- lays YDB 6-7.30 pm., 10.30 pm 2 am., 4.30-10.30 or 11 am., Sat.
25	Met	. Broadcast Band	11.740	OLR48	PRAGUE, CZECHOSLOVAKIA, 25.51 m., Addr. (See 11.840 mc.)	10.220	PSH	to 11.30 am. RIO DE JANEIRO, BRAZIL, 29.35 m., Addr. Box 709. Broadcasts
11.928		SAN JOSE, COSTA RICA. 25.15 m. La Voz del Pilot. Apartado 1729.	11.750	G SD	DAVENTRY, ENG., 25.53 m., Addr. B.B.C., London, 3-5.15 am., 9	10.042	DZ8	6-7 pm., Mon. 8-8.30 pm. ZEESEN, GERMANY, 29.87 m., Addr. Reichspostzenstralamt, Ir-
11.910	CDII90	10 am.·n., 4-10 pm. VALDIVIA, CHILE, 25.2 m., P. O. Box 642. Relays CB69 10 am1	11.740	SP25	amnoon. 12.30-6 pm., 6.20-8.30 pm., 9.20-11.20 pm. WARSAW, POLAND, 25.55 m., 6-	10.100		DEUTSCHE FREIHEITS SENDER. 29.70 m., loc. in Germany, under-
11.900	-	pm., 7-10 pm. HANOI, FRENCH INDO-CHINA. 25.21 m. "Radio Hanoi", Addr.	11.740		9 pm. HAVANA, CUBA. 25.55 m. P. O. Box 32. Daily 8 am.: I am. Sun.	9.995	COBC	cover. 4-5 pm. HAYANA, CUBA, 30.02 m., Addr. P. O. Box 132. Relays CMBC
11.900	XEWI	2 am., 6-10 am., 150 watts. MEXICO CITY, MEXICO, 25.21 m.,	11.740	HA1	8 am12 m. Relays CMX. VATICAN CITY, 25.55 m. Testing irregular.	9.920	JDY	6.55 aml am. DAIREN, MANCHUKUO, 30.24 m. Relays JOAK daily 7-8 am. Works
		Addr. P. O. Box 2874, Mon. Wed., Fri. 3-4 pm., 9 pm12 m. Tues. and Thur. 7.30 pm12 m.	11.730	PHI	HUIZEN, HOLLAND, 25.57 m., Addr. N. V. Philips' Radio, Daily 6.15-6.45 pm. Sat. 7.15-7.45 pm.	9.892	CPI	Tokyo occasionally in early am. SUCRE, BOLIVIA, 30.33 m., 11 am., n., 7-9 pm.
11.685	TPA3	Sat. 9 pm12 m., Sun. 12.30-2 pm. PARIS, FRANCE, 25.24 m., Addr. (See 15.245 mc.) 2-5 am., 11.15 am6 pm., 7-9.15 pm.	11.730	WIXAL	BOSTON, MASS., 25.57 m., Addr. World-Wide B'cast'g Foundation, University Club. Daily exc. Sat. and Sun. 9-11 pm.	7.860		MADRID, SPAIN, 30.43 m., Addr. Post Office Box 951, 7,30-8, 8,40-9 pm. Continued on page 666)

The Short Wave League

On the Ham Bands

(with the "Listening Post" Observers)

Edited by Elmer R. Fuller

HONORARY MEMBERS

D. E. Replogle John L. Reinartz Manfred von Ardenne E. T. Somerset

Hollis Baird

Hugo Gernsback, Executive Secretary

CONDITIONS during the month of December have been very bad, and the reports received certainly show it. However, they are on the mend. A few new observers were appointed during the past month, as follows:

Robert Parker . Ltah Edward Lendzioszek Massachusetts Maurice P. Wynne Louisiana Charles Le Ralle France

L. F. Gallagher, formerly Observer for New York, has asked to notify, via this department, his SWL friends that his new QRA (address) is P. O. Box 419, Osborn, Olio, He has been transferred to Patterson Field, and is now Aircraft Radio Mechanic.

Reports for the past month were received from the following observers:

Carling, Len M Illinois
Clarke, Stanley Canada
Fitzpatrick, John New Jersey
Fuller, Charles H Special Observer
the editor (N.)
Fuller, Lester
Halliday, Ray South Carolina
Hegler, Burns E Kansas
Henderson, Bill Arkansas
Jordan, Tom Pennsylvania Kemp, Howard G Connecticut
Kemp, Howard G Connecticut
Lang, Ernest W Washington
Lendzioszek, Edward Massachusetts
Noyes, William Dean Nebraska
Parker, Robert Utah
Slaughter, Edward C Texas
Taglauer, Robert Kentucky
Wallen, Dan T Colorado
Sibbin, J. C New Zealand
Akhtar, Masud India
Wells, Jack Alabama
Wood, James R Minnesota

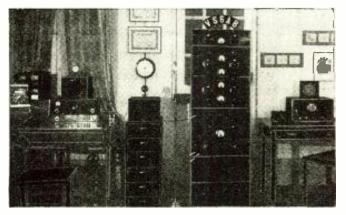
And now for the reports on the various continents. As usual, we will start off with Asia, and only a few are reported. This seems to be the rarest of the continents heard.

Call Freq. mc R S Observer.

Call	Freq. mc.	K	٠.	Observer
VU2COO	14.	4	7	Wood
VU2CQ F18AC	14.12	3	6	Wells
F18AC	14.26	5	6	Akhtar
J2KG	14.	3	4	Akhtar

From Africa, several were reported, but not nearly as many as in the previous month.

nearry as	man) as m	111	e pre	Alone Highlin.
ZSIAX	14.075	5	8	Noyes
ZS1BV	14.085	5	7	Noves
ZSICF ZSIDB ZS2AN	14.05	3	4	Akhtar
ZSIDB	14.	3	3	Akhtar
ZS2AN	14.06	5	5	Akhtar
7S2G	14.30	5	5	Akhtar
752 X	14.043	ζ	8	Noves
ZS2X ZS2N	14.020	4	4 3 5 5 8 9	Fitzpatrick
ZS2AF	14.025	4	ź	Fitzpatrick. Akhtar
ZS4H	14.170	5	7-9	Jordan, Noyes, Fitz-
das, y v a a	14.170	,	, . ,	patrick, Slaugh-
				ter. Clarke
ZS5CL	14,280	5	8	Akhtar. Taglauer.
LOSCL	14.200	J	0	Henderson
ZS5CO	14.140	5	7	Taglauer, Akhtar.
23300	14.140	J	,	Noves
ZS51	14.030	5	9	Fitzpatrick
ZS5CA	14.165	4	ź	Fitzpatrick
ZS5CA ZS5C	14.015	3	8	Fitzpatrick
ZS5T	14.015	5	8	Noyes
2331	14.040	J	0	110) CS
ZS5BZ	14.15	5	6	Akhtar
ZS6BR	14.027	4	5	Wood, Slaughter,
ZSODK	14.037	4	3	Noves
ZS6EJ	14.135	5	3-7	Hegler, Akhtar, C.
Z30E)	14.155	Э	3-7	
ZS6DY	14,210		7	Fuller, Taglaner
Z30D1	14.210	4	/	L. Fuller, Slaughter, Akhtar
ZS6A	11110	4	,	
LSOA	14.120	4	6	L. Fuller, Slaughter.
CODE	14.005		,	Fitzpatrick
ZS6BE	14.095	4	6	L. Fuller
ZS6EF	14.080	2	7	Taglauer
ZS6BY	14.060	5 5 5 5 5	8	Taglauer, Noyes
ZS6BW	14.040	5	9	Taglauer
ZS6N	14.040	- 5	7	Taglauer
ZS6AJ	14.	- 5	6	Slaughter
ZS6AU	14.	5	6	Slaughter
ZS6DW	14.060	3-5	4-8	Carling. Wells. Fitz-
				patrick, Slaughter,
				Clarke Henderson


Call ZS6BD ZS6S ZS6DR ZS6ED CN1AF	Freq. mc. 14.070 14.120 14.10 14. 14.110	5 3 5	8 6 6	Observer Fitzpatrick Fitzpatrick. Noyes Akhtar Akhtar Noyes, Wood, Fitz-	
				patrick. Clarke. Wells	YV4AE
CN8AW	14.010	e	-	Fitzpatrick	
CN8RA		5 3 5 5			37174 6 37
	28.425	Š		Halliday	YV4AX
CN8AU	14.050	5			YV5ABQ
ZE1JJ	14.11		- 6	Akhtar	YV5AG
ZELIM	14.26	3	3	Akhtar	YV5ABY
ZEIJT	14.	35555	6	Akhtar	YV5ACA
ZE1JX	14.013	- 5	7	Noves	CX1AA
VO2HC	14.29	- 5	8		CX2AK
VÕ4KTB		5		Clarke	OA4AS
VŐ4ECI	14.005		ς.	Fitzpatrick	HCIFG
FB8AH	14.340	3 5	8	Iordan	HCIIW
		- 3	0		
SU5NK	14.11	*,1	4	Yours truly	CE2BX
					.CE2BR
Because	of the po	onr	cond	itions during the past	CE3BH
				dearth of DA, we will	CE3AT

include South America in our department for thi 14. 4 5 Wood 14.090 5 5.8 Carling, Akhtar, C

LCIDA	14.070	J	1-63	Fuller, Hegler.	٠.
				Wallen	
	28.215	5	8	Fitzpatrick	
LU2BJ	14.060	4	7	Hegler	
LU4BK	14.095	5	8	Noves	
LU4BC	14,230	4	6	Fitzpatrick, Akht.	аг

	Call	Freq. mc.	. R	S	Observer
	PY8AG	14.310	5	- 8	Clarke
	YV1AN	14.090	5	8	Carling
	YVIAQ	14.030	5	4	Lang
	YV4AM	14.175	. R 5 5 5 4 5	7	Fitzpatrick
-	YV4AN	14.110	5	6	Wallen
	YV4AE	14.075			Carling, Lang. Heg-
					ler, Wood, Wal-
					len, Fitzpatrick
	$YV4\Lambda X$	14.130	5	4	L. Fuller
	YVSABQ	14.075	4	6	Kemp, Wallen
	YV5AG	14.215	5	9	Fitzpatrick
	YV5ABY	14.225	5	- 8	Fitzpatrick
	YV5ACA	14.135	5	- 8 - 8 - 7	Fitzpatrick
	CX1AA	14.080	5	- 8	L. Fuller
	CX2AK	14.	- 5	7	Wood
	OA4AS	14.075	5	6	Henderson
	HC1FG	14.150	5	8	Carling
	HC1JW	14.080	5	5:8	Fitzpatrick, Wells
	CE2BX	14.120	4	5	Wallen
	.CE2BR	14.095	. 5	7	Henderson
st	CE3BH	14,205	5	8	L. Fuller
11	CE3AT	14.075	5	8	L. Fuller
is	CE3BA	14,240	. 3	5	Wallen
	CE3CH	14.110	5	8	Carling
	CE3BK	14,040	545555555554555555	8 5 8 7	Carling
	CE4A1	14.085	- 5	. 9	
	11.7.1.71	14.15	- 5	- 8	Wells

Europe came through again last month, but not so strongly as it did in the month before. Several, however, were heard with good signal strength. A glance at the following will prove this:

Ham station VS6AB, Hongkong, China. Operated by J. W. M. Brown, c/o Import & Export Office, Kow-loon, Hongkong, Photo courtesy of Joe Miller. See veri card in January issue.

LU4ABG	14.250	5	9	Fitzpatrick	CTIAY	14.100	4 9	
LU'4CZ	14.060	5	7-8	Henderson, Carling	CT1ZA		4 8	
LU4DJ	14.100	4	7	Henderson	CT1BP		3 5	
LUSCZ	14.075	5	7	Lang, Noves	CT1PK	14.09	5 4	C. Fuller. Fitz-
LU7BK	14.120	4	7	Wallen				patrick
HK1AH	14.075	5	9	Fitzpatrick	G2V'G	28.580	5 7	
HKIAG	14.015	5	7	Clarke				son, Noyes, Heg-
HKIAA	14.020	5	8	Hegler				ler, Taglauer
HK3CL	14.080	5	9	Iordan	G2MF	28.065	5 9	
HK3JA	14.08	5	8	Wells	G21S	28.200	5 8	Taglauer
HK3CI	14.160	5	7	Fitzpatrick	G2MS	28.105	5 7	Taglauer
HK3LO	14.260	5	7.8	Hegler	G2M V	28.300	3 €	i Fitzpatrick
HK3CG	14.282	5	5	C. Fuller	G2XN	14.115	3 6	Fitzpatrick
HK3CO	14.25	5	7	Wells	G2AC	27.995	4 7	Noves
HK4DF	14.02	4	4	Yours truly	G3FA	28.160	5 7	Fitzpatrick, Akhtar
HKSEE	14.375	Š	8-9	Fitzpatrick. Carling.	G5ML	14.205	5 7-9	Fitzpatrick, Carling
111454313	1 1.177 5		0 7	Jordan	G5JO	14.050	5 6	
PYTHO	14.140	5	4	Lang	G5 L.U	28.400 4	5 6-7	Halliday, Jordan
PYIFR	14.	5	8	Slaughter, Fitzpat-	G5BY	28.158	5 8	
				rick, Lang	G5GJ	14.08	5 5	
PY2HA	14.180	5	7	L. Fuller	G6WZ	14.09	5 5	
PY2CK	14.130	5	8	Taglauer, Akhtar	G6GX	28.387	5 9	
PY2AK	14.100	5	7	Lang. Akhtar. Hen-	G6GW	28.135	5 7	Noves
1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.100	-	•	derson. Slaughter	G6QX	28.350	3 5	
PY2DA	14.080	4	5	Lang. Akhtar	G6ĞF	28.375	3 7	
PY2IT	14.14	4	Š	Akhtar	G6LL		3 6	
PY2MI	14.11	Š	5	Akhtar	G6WS	28.370	3 4	
PY2AP	14.160	5	6	Jordan	G6NF	14.025	5 7	Clarke
PY4EJ	14.08	Š	6	Akhtar	G61A	14.300	3 7	
PYSAH	14.130	1	6	Lang	G6LK	28.105	4 8	
PY5AU	14.170	5	6	Jordan	G6LW	28.245		Fitzpatrick
PY7AI	14.29	5	6	Wells .	G6WT	28.110-		Fitzpatrick
PY7GA	14.	5	6	Slaughter	GO W I			page 703)
1 1 / (1/1	4.74	J	U	DIMMBULLI		COMMINA	u Un	Lake Land

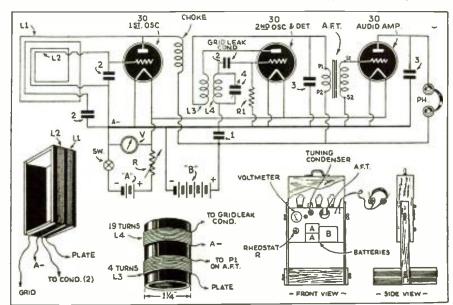
						1		
Mc.	Call		Mc.	Call		Mc.	Call	
7.854 7.797	HC2JSB HBP	GUAYAQUIL, ECUADOR, 38.2 m. Evenings to 11 pm. GENEVA, SWITZERLAND, 38.48 m.,	6.550	TIRCC	SAN JOSE, COSTA RICA, 45.8 m., Addr. Radioemisora Catolica Costarricense. Sun. 11 am2 pm.,	6.150	CJRO	WINNIPEG, MAN., CANADA 48.78 m., Addr. (See 11.720 mc. Daily 6 pm12 m., Sun. 5-10 pm
7.614	CR6AA	Addr. Radio-Nations. LOBITO, ANGOLA, 39.39 m., Mon., Wed., Sats. 2.45-4.30 pm. Also 7.177.	6.545	YV6RB	6-7, 8-9 pm. Daily 12 n2 pm., 6-7 pm., Thurs. 6-11 pm. BOLIVAR, VENEZUELA, 45.84 m.,	6.150		VILLARRICA, PARAGUAY, 48.70 m. 4-6 pm. BULAWAYO, RHODESIA, S
7.510	JVP	Also 7.177. NAZAKI, JAPAN, 39.95 m., 8-9.30 am.	6.520	YV4RB	Addr. "Ecos de Orinoco." 6-10.30 pm. VALENCIA, VENEZUELA, 45.98 m.			AFRICA, 48.8 m. Mon., Wed. and Fri. 1.15-3.15 pm.; Tues. I am12 n.; Thurs. 10 am12 n Sun. 3.30-5 am.
7.450	TI2R3	SAN JOSE, COSTA RICA. 40.27 m. "Radioemisora Athena". 9.30-11	6.516	YNIGG	MANAGUA, NICARAGUA, 46.02 m., Addr. "La Voz de las	6.145	HJ4ABG	MEDELLIN, COL., 48.79 m. 11 am. 12 n., 6-10.30 pm.
7.410	HCJ84	QUITO, ECUADOR, 40.46 m., 7- 9.30 pm. irregularly.	6.500	HII	Lagos." 1-2.20, 8-10 pm. Except Sundays. CIUDAD TRUJILLO, D. R., 46.13 m.	6.140	W8XK	PITTSBURGH, PA., 48.83 m., Addr Westinghouse Electric & Mfg Co. Relays KDKA 11 pm12 m
7.410	YDA	TANDJONGPRIOK, JAVA. 40.46 m. Addr. N.I.R.O.M., Batavia, 10.30 pm2 am.; Sat. 7.30 pm 2 am.	6.480		pm., 5.40-7.40 pm. SANTIAGO DE LOS CABALLEROS,	6.137	CR7AA	LAURENCO MARQUES, PORT. E AFRICA, 48.87 m. Daily 12.05-1 4.30-6.30, 9.30-11 am., 12.05-4 pm.
7.380	XECR	MEXICO CITY, MEX., 40.65 m., Addr. Foreign Office. Sun. 7-8 pm.	6.470	YNLAT	D. R., 46.28 m., Addr. Box 356. 9.40-11.40 am., 7.40-9.40 pm. GRANADA, NICARAGUA, 46.36	6.133	XEXA	MEXICO CITY, MEX., 48.93 m., Addr. Dept of Education. Daily
7.220	HKE	80GOTA, COL., S. A., 41.55 m. Tues. and Sat. 8-9 pm. Mon. and Thurs. 6.30-7 pm.	6.465	YV3RD	m., Addr. Leonidas Tenoria, "La Voz del Mombacho." Irregular. BARQUISIMETO, VENEZUELA.	6.130	VP3BG	8-11 am., 2.30-4 pm., 7.30 pm 12.45 am. Sun. 1.30 pm12.45 am. GEORGETOWN, BRIT. GUIANA
	YNAM	MANAGUA, NICARAGUA, 41.67 m. Irregular at 9 pm.	6.450	HI4V	46.37 m. Radio Barquisimeto, ir- regular. SAN FRANCISCO DE MACORIS,	6,130	TIEM	48.94 m. 9-10 am., 2.15-6.30 pm., Sun. 5.30-11.30 am., 3-5 pm. SAN JOSE, COSTA RICA, 4R 94 m.
7.17 7	CR6AA	LOBITA, ANGOLA, PORT. WEST AFRICA. 41.75 m., Mon., Wed., and Sats. 2.45-4.30 pm. Also see 7.614 mc.	6.400	TGQA	D. R., 46.48 m. 11.40 am1.40 pm., 5.10-9.40 pm. QUEZALTENANGO, GUATEMALA,		CHNX	SAN JOSE, COSTA RICA. 48.94 m. "El Mundo", Apartado 1049, 11 amII pm., Sun. 10 am6 pm. HALIFAX, N. S., CAN., 48.94 m.
	FO8AA	PAPEETE, TAHITI, 42.25 m., Addr. Radio Club Oceanien. Tues. and Fri. 11 pm12.30 am.	6.384	ZIZ	46.88 m., MonFri. 9-11 pm. Sat. 10 pm1 am. Sun. I-3 pm. BASSETERRE, ST. KITTS, W. IN- DIES, 46.99 m. 4-4.45 pm. Wed.			Addr. P. O. Box 998, MonFri. 7 am11.15 pm., Sat. 11 am 11 pm., Sun. 12 n11.15 pm. Re- lays CHNS.
7.088	PIIJ	DORDRECHT, HOLLAND, 42.3 m., Addr. Dr. M. Hellingman, Tech- nical College, Sat. 11.10-11.50 am.	6.340	них	7-7.30 am. CIUDAD TRUJILLO, D. R., 47.32 m., Sun. 7.40-10.40 am., daily 12.10-	6.130		JELOY, NORWAY, 48.94 m. 11 am. 6 pm.
7.050	FG8AA	POINT - A - PITRE GUADELOUPE, F.W.I., 42.55 m., 6-7 pm., also 9-10.30 pm. Irregular, P.O. Box 125.	6.336	OAXIA	I.10 pm., Tues, and Fri. 8,10-10,10 pm. ICA, PERU, 47.33 m., Addr. La Voz de Chiclayo, Casilla No. 9. 8-		CXA4	MONTEVIDEO, URUGUAY, 48.98 m., Addr. Radio Electrico de Montevideo, Mercedes 823. 8 amNoon. 2-10 pm.
6.990	XEME	MERIDA, YUCATAN, 42.89 m., Addr. Calle 59, No. 517, "La Voz de Yucatan desde Merida." Irregular.	6.324	cocw	HAYANA, CUBA, 47.4 m., Addr. La Voz del Radio Philco, P. O. Box 130. 6.55 am12 m. Sun. 9.55		НЈЗАВХ	BOGOTA, COL., 49. m., Addr. La Voz de Col., Apartado 26-65. 12 n2 pm., 5.30-11 pm.; Sun. 6-11 pm.
6.977	XBA	TACUBAYA, D. F., MEX., 43 m. 9.30 am1 pm., 7-8.30 pm.	6.310	HIZ	am10 pm. CIUDAD TRUJILLO, D. R., 47.52 m.	6.122	HPSH	PANAMA CITY, PAN., 49 m., Addr. Box 1045. 10 am1 pm.,
6.805	HI7P	CIUDAD TRUJILLO, DOM. REP., 44.06 m., Addr. Emisoria Diaria de Commercio. Daily exc. Sat. and Sun. 12.40-1.40, 6.40-8.40 pm.			Daily except Sat. and Sun. 11.10 am2.25 pm., 5.10-8.40 pm. Sat. 5.10-11.10 pm. Sun. 11.40 am1.40 pm.	6.122	FK8AA	5-11 pm. NOUMEA, NEW CALEDONIA, 49.00 m., Radio Noumea, Addr. Charles Gaveau, 44 Rue de l'Al- ma., Wed. & Sats. 2.30-3.30 am.
6.790	D 7 LI	Sat. 12.40-1.40 pm. Sun. 10.40 am 11.40 am. PARAMIRARO SURINAM 44 IA		YV4RD OAX4 G	MARACAY, VENEZUELA, 47.62 m. 6.30-9.30 pm. exc. Sun. LIMA, PERU, 47.63 m., Addr.	6.117	XEUZ	MEXICO CITY, MEX., 49.03 m., Addr. 5 de Mayo 21. Relays
		PARAMIRABO, SURINAM. 44.16 m. Addr. P. O. Box 18. Daily 6.06-8.36 am., Sun. 9.36-11.36 am. Daily 5.36-8.36 pm.	6.280		Apartado 1242. Daily 7-10.30 pm. TRUJILLO CITY, D. R., 47.77 m. 7.10-9.40 am., 11.40 am2.10 pm.,	6.11 5 6.110	OLR2C	PRAGUE, CZECHOSLOVAKIA, 49.05 m. (See 11.40 mc.)
6.7 75	нін	SAN PEDRO DE MACORIS, DOM. REP., 44.26 m. 12.10-1.40 pm., 7:30-9 pm. Sun. 3-4 am., 4.15-6 pm., 4.40-7.40 pm.	6.270	YVBRP	3.40-9.40 pm. CARACAS, VENEZUELA, 47.79 m. Addr. "La Voz de la Philco." Daily to 10.30 pm.		XEGW	DAYENTRY, ENGLAND, 49.1 m., 6,20-8.30, 9,20-11.20 pm. MEXICO CITY, MEX., 49.1 m., Addr. La Voz de Aguila Aztaca desde Mex., Apartado 8403. Re.
6.750	JVT	NAZAKI, JAPAN, 44.44 m., Addr. Kokusai-Denwa Kaisha, Ltd., Tokyo. Irregular.	6.255 6.243	YV5RJ HIN	CARACAS, VENEZUELA, 47.18 m. 5.30-8 pm. CIUDAD TRUJILLO, D. R., 48 m.	6.108	HJ6A8B	lays XEJW 11 pm1 am. MANIZALES, COL., 49.14 m., Addr. P. O. Box 175. MonFri. 12.15-
6.730	H13C	LA ROMANA, DOM. REP., 44.58 m., Addr. "La Voz de la Feria." 12.30-2 pm., 5-6 pm.	6.235		Addr. "Le Voz del Partido Dom- inicano." 12 n2 pm., 6-10 pm. LA CEIBA, HONDURAS, 48.12 m. Addr. "Le Voz de Atlantida."	6.100	YUA	1 pm.; Tue. and Fri. 7.30-10 pm.; Sun. 2.30-5 pm. BELGRADE, JUGOSLAVIA, 49.18
6.720	РМН	BANDOENG, JAVA, 44.64 m. Re- lays N.I.R.O.M. programs, 4.30-11 or 11.30 am. Also Sat. 9.30 pm		VIIIA	8-11 pm.; Sat. 8 pm1 am.; Sun. 4-6 pm.	6.100	LAXEM	m. 1-3, 6.30-8.30 am., Noon-6.30 pm. BOUND BROOK, N. J., 49.18 m.,
6.690	TIEP	1.30 am. SAN JOSE, COSTA RICA, 44.82 m., Addr. Apartado 257, La Voz del Tropico. Daily 7-11 pm.	6.210	—	VALERA, VENEZUELA, 48.15 m. 6-9.30 pm. SAIGON, INDO-CHINA, 48.28 m., Addr. Radio Boy-Landry, 17 Place	6.097	ZRK	Addr. Natl. Broad. Co. KLIPHEUVEL, S. AFRICA, 49.2 m. Addr. S. African Broad. Co., Johannesburg, Daily 12 n4 pm.
6.675	НВФ	GENEVA, SWITZERLAND, 44.94 m. Addr. Radio Nations. Off the air at present.	6.205	YVSRI	A. Foray. 4.30 or 5.30-9.15 am. CORO, VENEZUELA, 48.32 m., Addr. Roger Leybe, care A. Urbina y Cia. Irregular.	6.097	ZRJ	Sun. 12 n. 3.20 pm. JOHANNESBURG, S. AFRICA, 49.2 m. Addr. S. African Broad. Co.
6.672	_	44:94 m., relays Salamanca, Spain, 7-9.45 pm.	6.200		CIUDAD TRUJILLO, D. R., 48.36 m, Irregular.			Daily exc. Sat. 11.45 pm12.50 am.; Daily exc. Sun. 3.15-7.30 9-11.30 am. (Sat. 8.30-11.30 am.)
5.672	ΥΥΦ	MARACAY, VENEZUELA, 44.95 m. Irregular.	6.190	TG2	GUATEMALA CITY, GUAT., 48.4. m., Addr. Dir. Genl. of Electr. Commun. Relays TGI MonFri.	4.095	JZH	Sun. 3.30-4.30 or 4-5 am., 5.30-7, 9-11.30 am. TOKYO, JAPAN, 49.22 m., Addr.
6.635	HC2RL	GUAYAQUIL, ECUADOR, S. A., 45.18 m., Addr. P. O. Box 759, Sun. 5.45-7.45 pm., Tues. 9.15- 11.15 pm.	6.185	HIIA	6-II pm., Sat. 6 pmI am. Sun. 7-II am., 3-8 pm. 7-II am., 3-8 pm. P. O. Box 423. 7 am5 pm.		CRCX	(See II.800 mc., JZJ.) Irragular. TORONTO, CAN., 49.26 m., Addr. Can. Broadcasting Corp. Daily 7.45 am5 pm., Sun. 10,30 am.
5.630	HIT	CIUDAD TRUJILLO, D. R., 45.25 m., Addr. "La Voz de la RCA Victor," Apartado 1105. Daily exc. Sun, 12.10-1.40 pm., 5.40-8.40 pm.; also Sat. 10.40 pm.; 12.40 am.	6.170	W2XE	NEW YORK CITY, 48.62 m., Addr. Col. B'cast System, 485 Madison Ave. Mon., Fri. 12 m1 am. Sat. & Sun. 11.30 pm., 1 am.		ZBW2 VQ7LO	12 n. HONGKONG, CHINA, 49.26 m., Addr. P. O. Box 200. Irregular. NAIROBI, KENYA, AFRICA, 49.31 m., Addr. Cable and Wireless,
3.625	PRADO	RIOBAMBA, ECUADOR, 45.28 m. Thurs. 9-11.45 pm.	AC	Mar	. Broadcast Band			Ltd. Mon., Fri. 5.30-6 am., 11.15 am2.15 pm., also Tues. and Thurs, 8.15-9.15 am.; Set. 11.15
016.8	YNLG	MANAGUA, NICARAGUA. 45.39 m. Emisora Ruben Dario. 1.30- 2.30, 6-10.15 pm.		YVSRD	CARACAS, VENEZUELA, 48.71 m.	6.081	YVIRD	am3.15 pm.; Sun. 10.45 am 1.45 pm. MARACAIBO, VEN., 49.32 m. 6-11
S.858	H14D	CIUDAD TRUJILLO, D. R., 45.74 m. Except 5un. 11.55 am1.40 pm.	6.153		II am2 pm., 4-10.40 pm. MOCA CITY, D. R., 48.75 m. 6.40-		W9XAA	pm. CHICAGO, ILL., 49.34 m., Addr.
5.650	XBC	VERA CRUZ, MEX., 45.8 m. 8.15-9	6.150	VPB	9.10 pm. COLOMBO, CEYLON, 48.78 m., 7-11 am.		(Con	Chicago Fed. of Labor, Relays WCFL irregular, stinued on page 699)

0.

A Radio Ore-Locator

Operates with 3 Tubes

Charles E. Chapel


1st Lieut., U.S. Marine Corps, Retired

Left — Finished 3-tube orelocator in use.

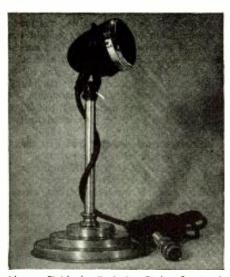
Right — Diagram of 3-tube treasure-locator

• RADIO enthusiasts are all familiar with the fact that radio can be used to locate buried treasure and mineral deposits, but in the past the practical instruments for this purpose have been both difficult to build and complicated to operate. Dr. Gerhard R. Fisher, of Palo Alto, California, who developed the radio direction finders on the ill-fated U. S. S. Macon, and who invented the radio "homing-devices" for airplanes, has perfected a simple treasure-hunter within the building and operating range of any amateur. The construction details of this instrument are released for the first time in this magazine.

In appearance, the device resembles a simple box which can be carried by the operator. Using three type-30 tubes, it has two oscillators, one of which acts as an oscillating detector. Both oscillating circuits are so adjusted as to produce a beat note. Metal, whether magnetic or not, in the field of the Loop Antenna will change its inductance and produce a change in the beat note. The audible beat note is in turn amplified by the third tube and can be heard in the headphones. By noting the change in the pitch of the headphone noise, the

operator can tell when he is passing over buried treasure or minerals, and plot a simple chart that will reveal the spot to start digging.

The materials needed for building the Fisher T-Scope are few in number and comparatively inexpensive. No special equipment is needed. All parts are standard, and can be purchased from any dealer in radio and electrical supplies.


The Loop Antenna is 16 by 14 inches, and has two windings, as shown in the diagram. "L-1" has 7 turns of No. 32 D.C.C. wire, and "L-2" has 9 turns of No. 32 D.C.C. wire. Both are wound in the same direction, with ½ inch space between the windings.

The holder for the Loop Antenna is made of any lightweight wood, 2½ inches wide and ¼ inch thick, these being the dimensions of each of the four sides of the Loop Frame.

The Loop Frame, as can be seen in the photograph of the complete set, is rectangular, with each corner braced by a cleat, the sides being joined at the corners with brass screws.

Two oak uprights, 1½ inches wide, ¾ inch thick, and 18 inches long, are fastened on opposite sides of the Loop Frame, with brass screws. These uprights support the instrument case when the Loop Frame is (Continued on page 679)

An Inexpensive Mike

Above—Finished "mike." Right—Sectional view of mike stand and suggested hook-up.

• HAVING need for an inexpensive mike, primarily for application in a ham rig, then later for P.A. purposes and certain types of remote broadcasts, we developed a combination of inexpensive parts that makes a very presentable appearance and does the job admirably. The level of this improvised mike is several db.'s higher than the ordinary crystal mike, although the quality will not permit high fidelity music reproduction. However, it was found to be ideal for communication work and voice reproduction, especially for the ham rig in view of the surprisingly low cost for the quality attained.

The mike proper is a crystal headphone unit, mounted in a half of a sponge rubber ball, purchased at the five and dime store. The case is that of a small bicycle headlamp, with bracket, that sold retail for 80 cents. The glass is removed and ordinary copper screening or tea strainer screen soldered into the cap. The screening is (Continued on page 688)

SCREEN
SCREEN
SCREEN

COPPER
SCREEN

BICYCLE
HEADLIGHT
ASE
WIRE
HEADLIGHT
BRACKET

CRYSTAL
MIRE
BALL

SPONGE
RUBBER
BALL

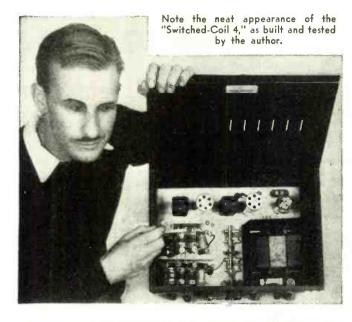
CRYSTAL
MIKE
STAND

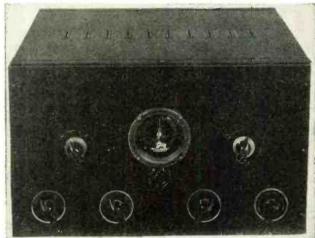
SHIELD

SHIELD

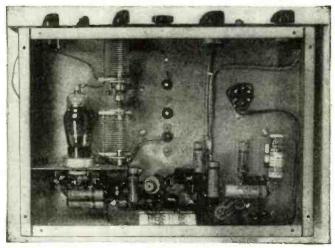
SHIELD

TO GRID
OF
INDUT
TUBE


XTAL
MIKE
CASE GROUNDED


for March, 1939 669

The "Switched-Coil 4"-


Raymond P. Adams

for Mobile, Marine

Another view of the 4-tube receiver which should make many friends.

Bottom view of the "Switched-Coil 4."

● THIS new mobile-farm (and emergency) super is compact, all-wave, sensitive and economical to operate. Only four tubes are employed; a 6J8G high efficiency mixer; a 6K7G I.F. amplifier; a 6C8G combination grid-leak second detector and first audio amplifier; and a 6V6G A.F. output amplifier. A Genemotor power unit, self-filtered, is featured, mixer and HF0 stage coils are switch selected, and both the tank and the bandspread condensers are ganged to facilitate tuning.

No R.F. stage is used. High efficiency coils, mounted right on the selector switch, the 6J8G tube, and careful layout and frontend circuit design all make for unusually good input sensitivity,

however.

Coverage is from 530 kc. to 32.4 mc. (9.25 to 565 meters). Four sets of coils are used for these general or band-set ranges: Band 1—530-1575 kc.; Band 2—1.5-4.6 mc.; Band 3, 4.18-12.5 mc.; Band 4—11.2-32.4 mc.

General coverage is provided by the 2-gang 260 mmf. per section tank condenser, and a very practical bandspread is effected by the 20 mmf. per section 2-gang spreader condenser. In the laboratory model the bandspread gang is mounted above chassis and is controlled by the main dial, and the bandset components are arranged below for knob adjustment. This positioning may be reversed by the individual builder who is primarily interested in receiving standard broadcast or 160 meter Ham transmissions.

A jack is provided for headphone reception, and the second detector circuit may be made regenerative to increase the I.F. selectivity, or made to oscillate to facilitate copying C.W. Audio frequency output is entirely ample for loudspeaker reproduction.

Circuit Notes: The mixer and HFO tuned circuits are both related to the self-excited 6J8G, which provides for good conversion even down through the 10-meter band. This tube is simply a 6L7 and a triode in one envelope—the triode's grid tied within the envelope to the mixer section's injector.

Bandspread and band-set condensers are connected in parallel. All coils are Alignaire trimmed, all oscillator circuits padded. A manual trimmer across the tuned mixer circuit is an optional refinement—particularly useful when the receiver is used under various conditions in the field and varying antenna loading effects must be quickly compensated for.

The front-end circuit is familiar to all readers acquainted with similar and common-run 6L7-6C5 Mixer-HFO layouts.

A single I.F. stage affords excellent selectivity and gain (at 456 kc.) in itself, due to its use of Ferrocart iron core transformers in both input and output positions. Additional effective I.F. efficiency is, however, made possible by the use of the second detector regeneration, which peaks the circuit to almost a singlesignal condition. The scheme for obtaining this regenerationand oscillation for c.w. reception, if we like-is an old and practical one involving the incorporation of a broadcast coil in the detector's cathode circuit and of a rheostat control bridged across this coil for feedback adjustment. The I.F. output transformer's peak-tone setting is, of course, affected in a minor degree by any variation of the control resistance, but so long as the initial peaking is made with the rheostat wide open for maximum regeneration (just below the point of circuit oscillation), the effect is acceptable, as detuning will then only be introduced as the sensitivity is backed off.

A single tube serves as both second detector and first audio amplifier. This tube, a 6C8G, is much better to use than a 6N7 or 6A6, as it has a separate cathode for each triode section and so eliminates the possibility of annoying inter-circuit coupling—something which even a well by-passed common cathode may effect.

The tube's A.F. section drives the 6V6G to speaker output and provides directly for *headphone* output. Note that the coupling condenser has .25 mf. value, necessary when crystal headphones are employed. (It should be stressed that crystal phones must not, under *any* circumstances, be connected directly into any p.c. circuit, such as the plate circuit of a tube. The phones *must* be isolated properly or they will be irreparably ruined.)

Increased A.F. gain may be brought about through the use of an audio transformer replacing the coupling network. The circuit,

Practical Superhet

or Farm Application

as given, will be satisfactory under most operating conditions-but if such a transformer is desired it can be added. Not only will the gain be increased, but better isolation between the 6C8G output plate and the 6V6G input grid circuits will be had.

The Genemotor power supply is a complete, self-filtered job. However, to improve performance and reduce supply interference a .25 mf. condenser has been connected from B plus to chassis and a 1 mf. capacitor between chassis and A "hot."

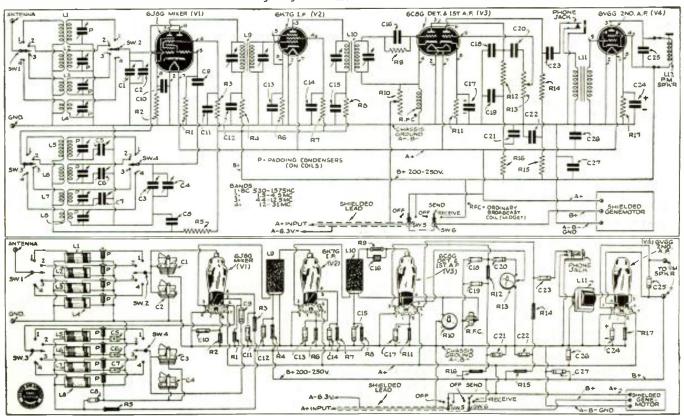
All No. 2 tube filament terminals are connected to chassis, all No. 7 terminals paralleled for common A "hot." The genemotor unit connects to chassis at one point only!

No speaker transformer is wired into the immediate circuit, as the receiver is designed for use with a P.M. reproducer equipped with such a component and designed to work out of the single Class A 6V6G, whose load resistance specification is 5,000 ohms.

Layout: Front panel layout centers the tuning dial for bandspread control (or bank control, if broadcast reception is of greater interest to the builder), with bandswitch knob to the left and 3-point "On-Off" knob (the extra point for standby-B circuit open only) to the right. Other knobs, from left to right, are for antenna load compensation, bandset (or bandspread, as the case may be), selectivity-sensitivityA useful 6-volt receiver using but four tubes—a mixer, an I.F. amplifier, a combination second detector and first audio stage, and a power output amplifier. A genemotor power unit supplies the plate voltage, and the coils for the various bands are switch-selected. Wavelength coverage is 9.25 to 565 meters.

BFO adjustment, and volume control. The home-built coil assembly is mounted above the chassis. Immediately behind it is the input I.F. transformer, and across the rear length of the base are the other easily identified major transformer and tube components. The 6J8G mixer is mounted below the chassis horizontally, though it may go 'upstairs" in conventional position if the builder so desires. The various condensers and resistors are positioned in circuit groupings close to associated sockets. Leads between front-panel controls and related circuit points, being rather long, run through low-capacity shield tubing-and both B plus and A "hot" leads are similarly shielded for as much of their length as possible and particularly near the receptacle for the genemotor can, though such shielding is not indicated in the under-chassis photo-

The genemotor, installed in a small shield can provided with a chassis-type male plug in its base, plugs into the receptacle shown at center right to make B plus and A "hot"

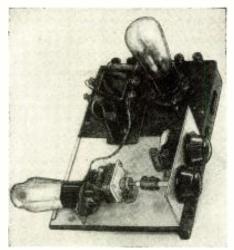

connection to circuit points and A minus-B minus connection to chassis right at the socket. The "On-Off-Standby" switch protrudes through the shield wall and receiver front panel for knob control. A receptacle, on the back of the box, is provided for connection to the energizing 6 volt storage

Construction Details

1. Drill the Par-Metal cabinet and chassis to exact layout specifications. Though a smaller assembly might seem possible, stick to recommended dimensions. Do not crowd the various components together, risking inadequate circuit isolation.

2. Build the switch assembly partitions. These should be large enough to amply shield the mixer from the HFO coils and to elevate the whole R.F. assembly far enough above the chassis so that when shields and selector switch are assembled together, its shaft will line up properly with the front panel switch hole. No exact specification need be given here; (Continued on page 685)

Wiring diagram of the four tube receiver.



1-Meter WAVES with

Ordinary Tubes

Nelson G. Haas and Carl A. Erbacher

Part 2—Conclusion

Here is the self-quenching one-meter receiver built by the authors; it uses ordinary tubes.

• TRANSFERRING the output of the one-meter transmitters previously described* to a radiating system or antenna employs the same basic theory used on the higher and more familiar wavelengths; the one but here is the need of placing the antenna system free and clear of surrounding objects. Fortunately, the dimensions of the antenna are so relatively small that no difficulty should normally be encountered.

The first antennas experimented with were simple vertical wires, either half- or quarter-waves long, clipped directly to the plate rods of the oscillators, either near the plate end for a half-wave antenna or near the plate-feed (cold) end for a quarter-wave radiator. Not much trouble was experienced in getting radiation from either of these two antennas, other than the necessity for cutting them very close to the proper length for maximum efficiency.

The quarter-wave antenna is clipped directly to the plate rod at a point an inch or so from the plate-feed end. Gradually slide it up toward the plate end of the rod, a fraction of an inch at a time, until maximum load is shown on the oscillator plate meter and maximum radiation, as determined by a field-strength meter placed a few feet away, is also had. A small flashlight bulb inserted in the antenna at the point where it clips onto the plate rod will light to indicate a considerable amount of antenna

If the half-wave antenna is used, it should be clipped onto the plate rod a few inches away from the plate end. It may be found that in coupling this type of antenna to the transmitter, the tube will stop oscillating unless the antenna is coupled to the plate end of the rod by means of a small variable condenser (a few microfarads is sufficient). A flashlight bulb inserted in the center of the half-wave antenna will show antenna current by lighting, and will very materially aid in making adjustments.

* Part 1, on Transmitters, appeared in the January issue.

More specific measurements as to the length of these antennas might be found useful. Supposing the Lecher Wires determine that the oscillator is on exactly one meter, a half-wave would necessarily have to be one-half such a length, or ½ meter—almost 19.7 inches (one meter equals 39.37 inches). At all times it is necessary to know the wavelength of the oscillator so as to cut the antenna for it to resonance.

An antenna clipped directly onto the

transmitter is not as convenient as one fed from a distance. After much experimentation, and looking around to see what other experimenters were using for feeder systems, the singlewire untuned transmission-line was chosen. Not only does it offer a quick and practically foolproof method of exciting the antenna, but its use permits varying the load on the oscillator by the simple expedient of shifting the point at which the feeder is clipped to the plate circuit. Loading up, of course, is accomplished by moving the feeder closer to the plate of the oscillator.

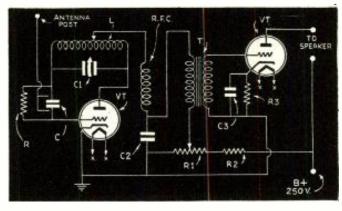
The optimum point on the half-wave antenna to clip the feeder to is best determined by trial and error; it is approximately 14% of a half-wave off the center of the antenna. For a one meter half-wave antenna this would be about 23/4 inches from the center.

Directing Waves

Having gotten such a half-wave antenna properly excited by the single-wire feed described, the next step is to set up an array that will make the antenna directional. The first thought, and one that proved practical, was to set up a reflector. Such a rod, longer

than the half-wave antenna by 2%, was spaced (½) one-quarter wave behind it and immediately the radiation pattern changed. The field strength meter described in the pre-

Hook-up of the onemeter receiver, as successfully built and tested by the authors. Tubes, such as the 56, 76 or 37 are satisfactory. vious article (it is a milliammeter placed in series with a fixed carborundum detector and tuned to one meter) soon indicated that behind the antenna the signal strength took a severe dip. The radiation pattern was strongly accentuated in a forward direction. This was checked by removing the reflector and placing it on another side of the antenna, only to have the same results.


Not completely satisfied, for we had visioned a more focused radiation, Mr. Haas

In the previous article the design and construction of two transmitters using readily available tubes as the 56, 27, 76, 37, were covered, together with the method of using a simple Lecher Wire type wavemeter for determining the wavelength at which the transmitters were operating. This article describes the antenna systems for radiating the output of these transmitters and the construction of receivers for these wavelengths.

suggested using a director as well as a reflector. After much experimentation with one it was found that a rod cut to about 87% of the half-wave, and spaced 3/8 of a wave in front of the antenna, produced a decided beam effect.

Playing with antennas proved so intriguing that for several weeks all other experimentation was put aside while the possibilities of squirting one meter signals was thoroughly explored. It was found that, within reason, a reflector or director could be spaced any odd quarter-wave away

(Continued on opposite page)

RADIO & TELEVISION

METER

Amplifier "Built in"

Since the higher harmonics from the oscillator get pretty weak, it is desirable to have an amplifier which will amplify them, thereby facilitating their identification in the receiver. The 6L7 accomplishes this very nicely and at the same time mixes in the output of the 10 kc. multivibrator. The plate circuit of the 6L7 is tuned to the approximate frequency of the desired harmonic. If the harmonic is louder than desirable, the tuning condenser is merely detuned. Five coils mounted on a 2-pole rotary switch of the same type as that used in the oscillator cover the range of from 530 kc. to 100 mc. The four lower frequency coils are stock Meissner coils available with small 10 mmf, trimmers attached. Merely set these at their maximum capacity. The broadcast coil which has an L-5 section of 258 turns should be reduced to less than 50 turns. For the highest frequency band the coils are wound with No. 12 bus-bar.

Multivibrator

Essentially a multivibrator consists of a two-stage resistance-coupled amplifier with the output connected to the input; the resultant feed-back leads to oscillations, determined by the circuit constants. When a small amount of voltage is fed into the input from some standard frequency source, such as the 100 kc. oscillator, the frequency of operation of the multivibrator becomes stabilized at a harmonic (in this case the 10th, or 10 kc.) of the controlling voltage and will generate this signal even with minor changes in circuit constants. Thus, with the addition of the 10 kc. multivibrator, signals can be had not only at each 100 kc. throughout the radio spectrum, but also at each 10 kc. with a degree of accuracy limited practically only by the care used in setting the 100 kc. oscillator. The 6Z7G, a dual triode, combines the twostage amplifier in one envelope. The 20,000ohm control in the grid of the input section is used to change the frequency of oscillation. With the control set at about its center position, the multivibrator will "lock in step" at the 10th harmonic of the 100 kc. oscillator. Variation of the control to its extreme positions will result in generation of signals from the 8th to the 12th harmonics.

Only I Switch Used to Change Frequency

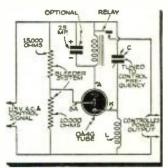
Only one switch is used to control the different stages of the frequency meter. This is a small Mallory 3-pole, 4-position rotary switch, labeled SW-3 (a. b. c) in the diagram. In the first position the unit

(Continued on page 689)

See Pages 686, 692 and 702 for Interesting Subscription Offers!

GOOD RESULTS DEMAND Good Instruments!

Model 666 Pocket Volt-Ohm-Milliammeter


For all A.C. and D.C. voltage, direct current and resistance analyses. A complete instrument for all servicing and other needs. Complete with alligator clips, battery and test leads. DEALER PRICE \$15.00

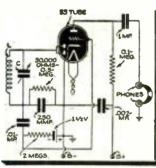
The Triplett Electrical Instrument Co.

made AMAZINGLY SIMPLE Only 4 standard types of Amperite AC-DC Regulators will replace 90% (over 100 types) of AC-DC Ballast Tubes now in use! WRITE FOR CHART AR. New Low Price \$1.00 List AMPERITE 6. SEI BROADWAY, N. AUTOMATIC 283 Harmon Ave., Bluffton, Ohio REGULATORS

Please say you saw it in RADIO & TELEVISION

Question Box

Relay hook-up for remote control. No. 1170


Remote Control Relay Circuit

I would like to obtain a circuit in which a remote control relay is employed to control the power output, and one using the new type 0A4G tube. The diagram should give exact details as to parts needed, together with an explanation of how the system functions .-Arthur Bellows, Cedar Rapids,

A. The accompanying circuit shows a remote control relay using the 0A4G tube in A.C. service. Note that full line voltage is applied between the anode and cathode, and that a bleeder system is used to maintain a voltage on the starter-anode just below that required for breakdown. The capacity and inductance, C and L, is a high-Q tuned circuit for R.F. signals. When an R.F. signal is transmitted on the power line, a resonant signal appears across the inductance and capacity. The voltage across condenser C increases the negative potential peaks on the cathode and increases the potentials between the cathode and starter-anode. A discharge between the cathode and starter-anode is started by these peaks. This discharge produces free ions which enable the discharge to transfer to the anode when sufficient starter-anode current flows. After this transfer occurs, current flows through the relay.

Precautions should be taken in the application of this type tube so that at high line voltages the A.C. applied to the starter-anode will not be great enough to reach the breakdown point. Precautions should also be taken so that at low line voltages the carrier voltage will be high enough to make up for the lowest line voltage. Therefore a minimum R.F. starter-anode voltage of 55 volts should be provided.

Simple Phone Monitor

Phone Monitor, No. 1171

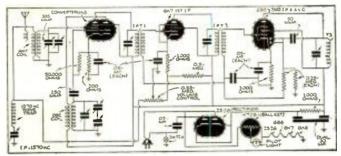
Will you kindly publish a diagram of a simple phone monitor using a 55 tube? Also will you kindly give the complete list of parts needed, etc? -Harry Roberts, Brooklyn,

A. Most any type of simple detector circuit with a means for picking up a small amount of R.F. from the transmitter can be used as a phone monitor. The pickup coil need not even be tuned, although the monitor will be considerably

more sensitive when tuned to the transmitter frequency.

Here is a satisfactory type of phone monitor using a 55 type tube as a diode detector and audio amplifier. The circuit LC is tuned to the transmitter frequency and a headset is connected to the output posts in series with the condenser and ground.

High Frequency Receiver

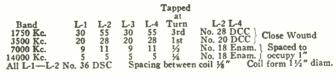

I contemplate building a high frequency receiver, to cover the bands from 10 to 40 meters. In this receiver I would like to make use of band-spread, a beat oscillator, crystal filter, an audio output meter and a built in monitor. In fact I would like to see published in the "Question Box," a diagram containing all these features and using about eight or nine of the most modern type tubes. Could you publish such a diagram?-Paul Cherosky, St. Louis, Mo.

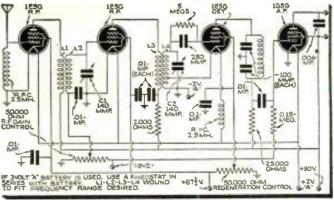
A. A diagram of a high frequency receiver containing the features as mentioned above appeared in the October issue of R. & T.

Wireless Remote Tuner

I wish to construct a remote timer, such as the Kadette Tunemaster," for use with my radio receiver. Will you kindly print a diagram and any suggestions you can offer?—Asa Carney.

A. The Tunemaster diagram you request is published herewith. The coil used to radiate the signal, T3, consists of 35 turns of No. 28 D.C.C. wire wound on a 3½-inch form. It can be tuned with a 30-300 mmf. condenser. Turn the volume of the remote unit on full, and tune the radio receiver until the hiss from the remote unit is heard through the loud speaker with the receiver's volume fully advanced. This will probably be near the high frequency (low wavelength) end of the receiver's scale. If the hiss is not heard, adjust the trimmer across T3 until the hiss is picked up on the receiver. Once this has been done, stations tuned-in on the remote unit will be heard through the receiver—the volume control of which, incidentally, should be kept well advanced, volume being controlled from the remote unit.




Remote "wireless" tuner for any receiver. No. 1172

Regenerative Battery Receiver

Will you kindly publish a diagram of a battery-operated regenerative set using one stage of tuned and one stage of untuned R.F., regenerative detector, and one stage of audio amplification? All in all, I should like to use four tubes .- Horace Martin, Richmond, Va.

A. Herewith is a diagram using a 1E5G as an untuned R.F. stage and a 1E5G as tuned R.F. followed by another 1E5G as a regenerative detector feeding into a 1G5G audio. If care is used to make L-1, L-2 identical to L-3, L-4, the two tuning condensers can be ganged. Alternatively, small 10 mmf. trimmer condensers can be shunted across the secondaries of the coils.

Regenerative Battery Receiver. No. 1173

A fee of 25c (stamps, coin or money order) is charged for letters that are answered by mail. This fee includes only hand-drawn schematics. We cannot furnish full-size working drawings or picture layouts.

1-Meter WAVES with Ordinary Tubes

(Continued from page 673)

several pipes or wiring ran was a definite obstacle that the signals did not penetrate. Similarly, reinforced concrete walls, or those built on metal lath, would act as effective shielding.

On the other hand, the size of the antenna makes possible the setting up of the antenna array within such walls, provided the output is aimed out of a convenient window. Another characteristic that was revealed when checking performance was the unexpected reflection from such objects as a metal floor or table lamp or other household furnishings, having a serious effect

on the radiation pattern.
A rod, cut slightly longer than a halfwave antenna, could be carried behind the field-strength meter, which would then show an altogether different reading. On the same principle, a rod experimentally placed in the vicinity of the receiver would, according to its position, increase or decrease the tuned-in signal. No two installations of either receiving or transmitting antenna worked alike, though a careful study soon showed the reason for the difference found.

One of the receivers was made portable by the addition of batteries used with a 37 type tube, and a circle of the house in which the transmitter was installed, was made. Here, too, the pattern was radically different than expected, due, without a doubt, to the variety of reflectors and shields naturally found on the immediate terrain. However, with the antenna array fairly well elevated, as in the second story window, and with no intervening objects to interrupt the light of sight, no difficulty should be had by the most casual experimenter in receiving a signal several miles away!

Apparently complete coverage of a given area is governed solely by the elevation of the transmitting antenna. At Alpine, N. J., commercial interests have erected a 450-foot steel framework atop the Palisades to support antennas for experimentation with Armstrong "frequency modulation" on about two meters, and it is reported, unofficially, that these signals have been picked up in most of the New York metropolitan area.

In working on one meter, many characteristics will be discovered that, at first glance, appear to be either freakish or just plain contrary to accepted practices. It will be seen, however, that once these characteristics are traced to their course one meter. istics are traced to their source, one meter transmissions follow a definite, and not too different pattern, as do transmissions on the lower frequencies.

These ultra-high frequencies are the last unexplored frontier of radio and it is only a question of time before they, too, are put to work, possibly to carry high-fidelity music and, of course, television! The man who now becomes acquainted with them will, in the near future, be one stride ahead of his fellow experimenter who ignores their possibilities.

List of Parts

List of Ports

L—5 turns ¼-in. dia. No. 22 wire. ½-inch long, soldered directly to condenser terminals

RFC—30 turns No. 28 wire. ¼-inch diameter

C—50 mmf, fixed mica midget condenser, with small strip ¼ x ¼ inch aluminum bent around it for coupling condenser for antenna

C1—Split stator condenser, as described in text

C2—By-pass condenser, 1 mf.

R—5 mesohms

R1—50.000 ohm potentiometer

R2—50.000 ohm fixed 1 watt resistor

R3—2000 ohm, 1 watt resistor

T—Any 3 to 1 (or thereabouts) audio transformer

VT—Tubes of the 56, 76 or 37 type are satisfactory

SPECIAL FEATURES

- Condenser assembly has 15 sections
 —9 for band-spread and 6 for main
 tuning. Permits uniform gain,
- Accurate "S" meter calibrated in "S" units from 1 to 9 and up to 40 db. above "S-9." Accurate on all bands.
- Noise limiter for auto ignition QRM and similar disturbances. Extreme, aid on 10 and 20 meters.

WRITE DEPT. RT-3 FOR 16-PAGE BOOKLET

HAMMARLUND MFG. CO., INC. 424-438 WEST 33rd ST., NEW YORK

CANADIAN OFFICE: 41 WEST AVE., NO., HAMILTON, ONT.

Greatest Book Value Ever Offered for 50c. See Page 644.

have been treated, the gain is uniform through.

out the entire tuning range. This high uni-

form gain is always usable even in the most

crowded bands because of the variable selec-

tivity crystal filter. This filter is applicable to

reception of voice and music as well as code.

Weak stations can be tuned in clearly without interference by selecting the proper band

width. Accurately calibrated dials and 310

degrees band-spread greatly simplify tuning.

New Tubes for Television

Black and white images can be reproduced in amateur television receiving stations, thanks to the new cathode-ray tubes now made available in 3, 5, 9 and 12 inch sizes.

New high-voltage half-wave rectifier for use in television power supply unit3 type 2V3-G. The peak inverse voltage of this tube is 16,500.

 RADIO CORPORATION of America has announced a new series of television tubes similar to the older style C-R tube, but a refinement of design makes it possible to build the tube shorter while affording the same screen diameter.

Type 1803-P4 is a 12-inch electromagnetic-deflection type with white phosphorus screen. This high vacuum tube, intended for television reception, will pro-

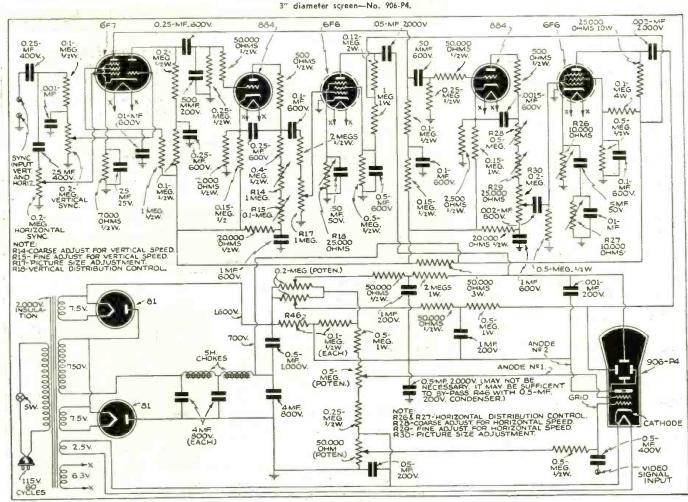
duce a black and white picture about 7½" x 10". It operates with a maximum Anode No. 2 voltage of 7000 volts and a grid No. 1 signal-swing voltage of approximately 25 volts for optimum image contrast. The bulb has been shaped to give minimum internal reflection and to provide maximum strength.

Type 1804-P4 is a 9" tube similar to the one previously described, but is smaller and provides a black and white picture measuring $5\frac{1}{2}$ " x $7\frac{1}{2}$ ".

With both of these tubes, 1900 volts may be used on the No. 1 Anode or focusing electrode, and 250 volts on the accelerating electrode, Grid No. 2.

There is also the 1802-P4, a 5" electrostatic-deflection type tube, with white

One of the new RCA short-stem television cathode-ray tubes. This is the 9" diameter model, No. 1804-P4.



phosphorus screen, which requires a No. 2 Anode voltage of 2000 volts maximum.

The RCA 906-P4 is a 3" electrostatic deflection type with white phosphorus screen. It takes a maximum voltage of 1500 on the high voltage electrode, and is designed not only for experimental television work but for oscillograph use as well.

RCA has also announced a new highvoltage, half-wave rectifier, Type 2V3-G, which is a tungsten-filament tube for use in suitable rectifying devices to supply the high (Continued on page 688)

Hook-up for new RCA television cathode-ray tubes: 3" diameter screen—No. 906-P4.

A Radio Ore-Locator

(Continued from page 669)

lowered to the ground, but their real func-tion is to keep a fixed distance between the Antenna and the instrument case. Where these uprights are joined to the instrument case, they are held in place with brass bolts and wingnuts, and are not anchored permanently to the case as they are to the Loop Frame, the reason for this being that the operator can loosen the wingnuts and rotate the case until he obtains the most efficient tuning for the device, in which case he tightens the wingnuts and notes this position.

The instrument case itself can be made with oak pieces, two being $16'' \times 3'' \times \frac{1}{2}6''$, and two being $14'' \times 3'' \times \frac{1}{2}6''$, joined together with brass screws, and reinforced with cleats at the corners. Inside this rectangular frame, 4 inches from the top, is mounted a chassis strip to hold the tubes, while the batteries are held in place at the bottom with wooden cleats. The front and back of this frame are faced with wallboard or light wooden pieces, one being permanently screwed to the frame with the other hinged and hooked so that it can be swung out for inspection and adjustment of the parts. In practice, these dimensions need not be followed exactly-they are only a guide, the principle being to construct a case which will hold all the parts without crowding. The carrying handle, though, must be made of leather or brass, since iron and steel should be kept to a minimum.

To operate, turn on the switch, and adjust the rheostat so that the voltmeter reads "2 volts." Then raise the instrument so that the loop-antenna (the base) is several inches above the ground. Turn the tuning knob until a good audible whistle is heard in the headphones. If the instrument is now carried over a metal object, the whistle will vary considerably in pitch.

You can adjust the tuning knob so that the pitch increases-that is, gets higher over the metal-or you may adjust it so that the pitch decreases. You will find, however, that the most practical adjustment is that in which the pitch decreases over metal.

The rheostat should never be adjusted so that the voltmeter reads more than 2 volts, but as the batteries lose their strength vou will find that the rheostat must be turned higher.

To test your set, before going into the field in search of buried treasure, bury a small metal plate a few feet under the surface of the ground. This need not be iron or steel, since the set operates just as well over non-magnetic metals, such as brass and copper. Walk over ground at some distance from the buried plate, and then over the spot where the metal has been placed, and note the variation of pitch in the headphone sounds. With this established, you are now ready to actually hunt treasure or minerals.

The cross-sectional area of metal lying in a horizontal plane is more important than the size or weight. For this reason, a few dollars buried flat in the ground will give a stronger signal than a large number buried on their edges. This T-Scope, as Dr. Fisher colle it is not designed to these Fisher calls it, is not designed to trace buried pipes, but it has been used successfully in searching for buried treasure. With a little care in building, and a lot of patience in operating, you, too, should have good luck with this instrument.

This apparatus is patented and the in ventor gives permission for you to build this instrument for your own use, but not for re-sale or hire.

(First American Serial Rights)

for March, 1939

GOOD PERFORMANCE!

with Brush products

Vibromike Model VM-1. For stringed musical instruments, here is an excellent contact mike—sensitive, s mall, and light in weight. Frequency response from 30 to 6,000 c.p.s., and its sensitivity makes it useable with the smallest amplifier.
Dimensions are only 1%" x 34" x 5/16". With mounting clamp and 25 ft. cable, List ... \$17.50.

Headphones Model BJ. Communications type headphones built to meet the most exacting specifica-tions. Light weight aluminum case, with diaphragm and crystal element hermetically sealed within. Phones enclosed in molded rubber earpieces for comfort and good earseal. With 5 ft. rubber covered cord, List \$12.00. Microphone Model HL. For ama-

teur stations and general P.A., applications, this diaphragm type mike is inexpensive and gives excellent results. Output level minus 46 db. and response from 100 to 5,000 c.p.s., plus or minus 5 db. Includes Vari-Swiv mounting, permitting manipulation, bringing out the mike's directional characteristics, With 25 ft. cable, List \$23.50. Socket optional.

Write for new Brush catalog.

BRUSH DEVELOPMENT CO. THE

3326 PERKINS AVENUE

CLEVELAND, OHIO

Material List

RCA 3—Type-30 tubes

TRIMM

-2000-ohm headphone set

-0.3 D.C. Voltmeter, V.

CORNELL-DUBILIER

Condensers: No. 1. 1 mf. No. 2. 0001 mf. tubular fixed condensers No. 3. 002 mf. tubular fixed condenser No. 4. 0001 mf. variable condenser

2-1½-volt Burgess No. F4FH batteries. (Connected in series.) ("A" Batteries.)
1-45-volt "B" battery, No. 5308

MISCELLANEOUS

1—"0" and "0ff" switch
Resistor (R-1)—1 megohm, ¼ watt resistor
Transformer—Any make of reliable audio transformer, ratio 3:1
R.F. Choke—25 turns, No. 33 D.C.C. wire, wound on ½ inch diameter coil form
1—30-ohm variable rheostat, R

Here's Your Button

The illustration shows the beautiful design of the Official Short Wave League button, which is available to averyone who becomes a member of the League. The button measures ½ inch in diameter and is inlaid in enamel—3 colors—red, white and blue. The requirements for joining the League are explained in a booklet, copies of which will be mailed upon request.

Please note that you can order your button at once—Short Wave League supplies it at cost, the price, including the mailing, being 35 cents. A solid gold button is furnished for \$2.00 prapaid. Address all communications to SHORT WAVE LEAGUE, 99-101 Hudson St., New York.

Your Inquiries Invited

When you need amateur equipment it is to your advantage to write to me. You get personal attention; terms financed by myself so you buy with less cost and more convenience; liberal trade-in value for your equipment; ten day trial of all receivers; and my cooperation in every way to see that you are 100% satisfied. No wonder my customers are boosters. You will be too. For the newest equipment, the latest information and technical help, write to WYARA.

Compare My Terms with Others

Model of	Cash	Down Pay-	12 Mo. Pay-
Receiver	Price	ment	ments
HQ-120	\$117.00	\$23.40	\$8.26
The NEW RME-70	\$138.60	\$27.72	\$9.79
Howard 430	29.95	5.99	2.12
NC80X and NC8IX	99.00	19.80	6.99
Improved NCIDIX	129.00	25.80	9.11
The NEW NCIOOA	120.00	24.00	8.48
Latest RME-69	152.88	30.57	10.80
Sky Champion & NC44	49.50	9.90	3.49
Breting 49 & SIA	99 00	10.00	4 00

Similar terms on Howard, Super Pro, HRO, PR-15, Breting 9, Sargents, others. And on Hallicrafter, National, Harvey, RME, Temco, RCA transmitters and National, Thordarson, UTC, Utah kits.

WOARA MISSOURI

1939 Senior Metal Tube

All-Wave All Electric Beam Power 5 Tube Communications Receiver

SEVEN NON-SKIP OVERLAPPING BANDS—8½4 to 2000 meters. Professional Band Spread. Beam Power, Communica-tions Set.

Power, communications Set.

POWERFUL, SENSITIVE —
Ultra Modern Features include: Beant of the set o

clear anyone, even a novice, can mild this set successfully.

Uses 100% Metal these rather than low-priced "g".

Uses 100% Metal these rather than low-priced "g".

Uses 100% Metal these rather than low-priced "g".

Side, one metal true 2526, one metal tube 8.53-A; as tuned screen are particle regenerative detector, powerful at sudio annulser. End sand automatic ballast stage.

Completes Senior. Spaces Explorer Kit Completes Senior. Spaces Explorer Kit Completes Senior. Spaces Explorer Kit (and automatic ballast stage).

Completes Senior. Spaces Explorer Kit (and automatic ballast stage).

Spaces Colis and speaker)

Five Matched Metal Tubes 83.75; Four S.W. Colis and S. 120 (and S. 120).

Bit Long 200 meters 15.5 mb 200 (and meters 1); Full toned Dynamic Speaker 81.95; Attractive two-toned wood cab-pramits. Speaker 81.95; Attractive two-toned wood cab-pramits. Output. Half-wave rediffer and automatic bal Commistee Senior Space Explorer Kit of all chassis parts. Power Supply and clear, simplified witing diagram (unwired, less tubes, coils and speaker)
Five Matched Metal Tubes 3.75: Four 31-4 to 200 meters \$1: Two B'east Coils 200 31:-Long Wave Coil :550 to 2000 meters \$1: Dynamic Speaker \$1.93; Attractive two-toned intex \$1.50; Wired and tested \$2.25 order. Welcht 7 lbs Send attamp for Circular. 25% all C.O.D. orders.

SPECIAL—Senior Space Evoluter. Complete Assembled, Wirel, Factory Tested Chasals, with all colls 314 to 250 neces set of matched metal tubes, built-in dramme speaker. \$15.35

'39 JR. SPACE EXPLORER 4-TUBE RECEIVER

BANDS-10

MODERN, SENSITIVE AND SELECTIVE! Ample

Uses one 6C6.
To one 12A7 (Tw
Tube) and one m
K-105.A; as tu m
screen regent
tive de la power
pentode au

amelifier, half-wave rectifier and autoensi-geriesus and power aupply opening and the second of the

ob the proof of th exum. this model.

SPECIAL Junior Space Emlorer Complete As-with all colls 10 to 2000 meters set of matchet tubes, built-in Tru-Fidelity Chromatic \$13.95

THREE -TUBE

Model 3AE Receiver

A powerful sensitive all-was set. Holds wonderful records for foreign reception. Its Diffus in Police and brains in Police and Polic

STAM. ONLY

Following Auxiliary Parts are available: 0.14 to 20 meter coil (towign) 25-14 to 45 meter coil (towign) 25-14 towign) 25-14 towign)

H. G. CISIN, CHIEF ENGINEER Allied Engineering Institute. Dept. S-53 98 Park Place. New York, N. Y.

H. G. CISIN'S New HAM Licenses

COMPILED FROM THE LATEST RECORDS OF THE FEDERAL COMMUNICATIONS COMMISSION

THERE are now approximately 50,000 licensed radio amateurs in this country. And hundreds of new amateurs are being licensed every month.

Heretofore no publication has listed the names and addresses of the new licensees as issued. RADIO & TELEVISION Magazine now provides this unique service, and publishes a list of newcomers in every issue. Check the names carefully so that you will be able to get in touch, not only with those amateurs in your neighborhood and vicinity, but also with those distant amateurs whom you wish to contact either by mail or by radio.

This list contains 100 names of newly licensed amateurs. YLs' names appear in blackface type.

KB4FTU Otto Wilhelm Gomez, 13 Commandant Gade, Charlotte Amolie, St. Thomas, V.I. W1CEV Lyman Hitchcock, 289 Walnut, Winsted, WIHUL Harry Leighton, Leighton Ave., Limestone, Me.
WILRT Carmine Ciarletto, Silvermine Ave., Norwalk, Conn.
WILSG James F. Hennessey, 103 Dover Point Rd., Dover, N. H.
WZAY Melvin I. Grummet, 65 Mill, Middletown, N. Y. Сопп WZFYL Robert A. Martiny, 4125 44th St., Sunnyside, L. I., N. Y.

WZLTP Alfred Greenberg, 401 Rahway Ave., Elizabeth, N. J.

WZLTQ Louis B. Pascal, 772 Forest Ave., New York, N. Y.

WZLTR Thomas J. Phelan, 96-23 45th St., Corona, N. Y.

WZLTS Aldro Lingard, Trustee, Fort Monmouth Radio Club, Building 271, Fort Monmouth, N. J.

WZLTT Harold Epand, 675 W. 160th St., New York. WZLTU Jay Chichon, 160 Vermilyea Ave., New York, N. Y. York, N. Y.

W2LTV Eliot Lee Johnson, 160-22 84 Rd., Jamaica,
N. Y.

W2LTX Leland J. Califano, 1033 Forest Rd., WZLTX Leland J. Califano, 1033 Forest Rd., Schenectady, N. Y.
WZLTY Robert F. Cassidy, 1035 Woodycrest Ave., New York, N. Y.
Theodore Grasman, 1506 University, New York, N. Y.
WZLUA Fred Wm. Poppe, 615 Eagle Ave., New York, N. Y.
WZLUE Ann Hallinan, 41 3rd Ave., Hawthorne, N. J. WZLUE Ann Hallinan, 41 3rd Ave., Flawmorne, N. J.
W3HWS Rudolph C. Koerner, Jr., 201 S. 35th St., Camden, N. J.
W3HWT Anthony J. Sivo, 54-56 Butler St., Trenton, N. J.
W3HWU Lewis, Jr., Curwen Rd., Rosemont, Pa.
W3HWV William Benner, 4722 Tampa St., Phila., W3HWV William Benner, 4722 Tampa St., Phila., Pa.
W3HWW Douglas M. Parr, 1511 Braddish Ave., Baltimore, Md.
W3HXC Saul Greenstein, 6522 N. Bouvier St., Phila., Pa.
W4AKC Joseph Abernethy, 404 W. Sixth, Gastonia, N. C.
W4AMF Cleveland Andrews, 1140 Belvidere Ave., Gastonia, N. C.
W4CCO Emmett B. Lewis, Jr., 213 S. Marietta St., Gastonia, N. C.
W4FTR Rollin M. Martin, R.F.D. No. 1, Lodge, S. C.
W4FTS Andrew C. Faire, 29 Baptist Hill, Greensboro, Alder boro, Ala. W4FTV Charles E. O'Groynn, 416 High St., Mont-

W4FTV Charles E. O'Groynn, 416 High St., Montgomery, Ala.

W4FTX John M. Hammond, 2325 Cussetta Rd.,
Columbus, Ga.

W4FTZ Henry L. Cotton, 327 4th Ave., S. Jacksonville Beach, Fla.

W4FUA Samuel S, McNinch, Jr., R.F.D. No. 2,
Sharon Lane, Charlotte, N. C.

W4FUT James J. Griffith, Jr., 1215 Watauga St.,
Kingsport, Tenn.

W4SH Jacob A, Maxwell, 212 W, Morgan St., W4SH Jacob A. Maxwell, 212 W. Morgan St., Raleigh, N. C. W5CKF John Henry Connell, Jal, N. Mex. WSEMZ George S. Johnson, 317 S. Dartmouth, Albuquerque, N. Mex.

W5HPN Le Roy J. Langlois, 927 America St., Baton Rouge, La.

W5HPP Francisco Ortiz, 421 Pierce Ave., San Antonio, Tex.
W5HPR Jack Cecil, 715 W. Chambers St., Cleburne, Tex.

burne, Tex. W5HPV Fred M. De Vorse, Valdez, N. Mex. W5HPW Wm. R. Baker, Crowville, La.

W5HPX Thomas Atkinson, 530 West 17th St., Houston, Tex.

W5HQB Norman Kendale, 132 N. Santa Fe, Bartlesville, Okla. W5HQC Warren M. Griffith, 203 Lexington, Jack-son, Miss. W5HQD All Corcanges, lota 9&10, Block 3, Flaxton, N. Dak. W6DKU Edwin Harper, 441 E. Ist Ave., Mesa,

Ariz.
W6GDI Albert L. Hullin, 633 E. Inyo, Tulare, Calif. Ariz.

W6GDI Albert L. Hullin, 633 E. Inyo, Tulare, Calif.

W6MAI Masayoshi Harada, 1777 Euclid Ave.,
Berkeley, Calif.

W6QQC Harold Keto, 4216 Illinois Ave., San
Diego, Calif.

W6QQE Joseph Fetzer, 303-E 5th South, Salt Lake
City, Utah.

W6QQF Arthur J. Holton, 1446 Jones St., San
Francisco, Calif.

W6QQF Albert Ezor, 1434 So. Crescent Heights
Blvd.. Los Angeles, Calif.

W6QQH Bob Cranston, 1929 5th Ave., Oakland,
Calif.

W6QQI Justen L. Olsen, B7 W. Ist North,
Ephraim, Utah.

W6QQK Royal G. Madsen, 1210 Crandall Ave.,
Salt Lake City, Utah.

W6QQS Wm. G. Gerlach, 2939 Best Ave., Oakland, Calif.

W6QQW Morgan W. Hays, 719 Goshen Ave.,
Visalia, Calif.

W6QQZ John F. Schmieskors, 820 Gleen, Fresno,
Calif.

W7ACU Frederick N. Frost, 4548 47th Ave., N.E.

W6QQZ John F. Calif.

Calif.
W7ACU
Frederick N. Frost, 4548 47th Ave., N.E.
Seattle, Wash.
W7HFM
Clarence E. Saunders, E. 2808 33rd Ave.,
Spokane, Wash.
W7HFN
Glenn A. Cox, 646 Hemlock Ave., Marsh-

W7HFN Glenn A. Cox, 646 Hemiock Field Ore.
W7HFO Earl F. Reilly, 1702 Rucker St., Everett, Wash.

Wash.
W7HFP Malcolm J. McFarlane, 1907 Hoyt Ave.,
Everett, Wash.
W7HFR Dennis R. Fenno, Dillingham, Alaska.

W7HFS Dallas H. Lien, 617 N. 16th St., Boise,

W7HFU Howard V, Berg, 7558 Earl Ave., N.W.
Seattle, Wash.
W7HFW Robert Wm. Sherman, 6808 30th N.E.
Seattle, Wash.
W7HFX Harry E. Turner, Group 15, Belton, Mon-

tana.

w7HFY
tana.

W7HFY
Raymond D. Kester, 1546 32nd. Milwaukie,
Ore.

W8MPP
Lorraine Swann, 274 E. Hancock St., Detroit, Mich.

W8SRR Richard M. Sweet, 11829 Franklin Blvd.,
Lakewood, Ohio.

W8SRY
Robert T. Sceer, 15998 Nelacrest Ave., East
Cleveland, Ohio.

W8SRZ Alfred Schafer, 228 Fair St., Berea, Ohio.

W8SSA Jack Rockwell, 513 7th Ave., Williamsport,
Pa.

Pa. W8SSC John Driscoll, 173 Florida, Buffalo, N. Y. W8SSD Jack M. Gabert, 2134 Henry, Sheboygan, Wis

Arlynn C. Knapp, 414 Emmons Bivd., Wyandotte, Mich. W8SSF

Jr., 203 Tinker Ave., WBSSI Louis C. Barber, Painesville, Ohio.

Bruce G. Born, 14809 Darwin Ave., Cleve-land, Ohio.

W8SSK Bogan Burke, 351 Rockview Ave., Youngs-town, Ohio,

W8SSL Wm. J. Clark, 705 Fairmont Ave., Youngs-

town, Chio.

W8SSO Howard H. Rausch, 315 Mackinaw, Sheboygan, Mich.

W8SSV Frank E. Bien, 9210 Plymouth, Garfield Heights, Ohio.

W9DUR Ransom V. De Faut, 3423 17th, Racine, Wie

Wis

W91FK Harold E. Coleman, 7 W. 9th St., McCook, Nebr.

RADIO & TELEVISION

the motion of this cloudy medium are influenced by the Sun's radiations.

It is estimated that the stratosphere layer

It is estimated that the stratosphere layer carrying a maximum ionization charge is approximately at an average height of 144 miles above the earth's surface. The high degree of ionization may be accounted for when one realizes the extremely low atmospheric pressure at such a high altitude.

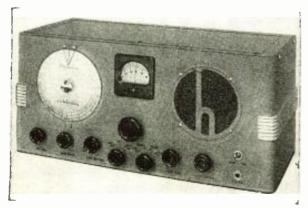
The various problems involved led several authors to suppose the existence of several layers within the ionized stratosphere. I prefer to consider the hypothesis of a cloudy medium, in motion, of changing composition, and changing in altitude the same as the atmospheric medium does. Of course, in the case of the stratosphere regions, ionization is the main consideration, while the visible clouds are but accumulations of condensed humidity.

The state of the reflecting stratosphere region is influenced periodically by the Sun's radiations; this explains the periodical corelations between the Sun's activity and the propagation of chort pages.

It is equally plausible to think that, between the earth's surface and the stratosphere region, at an altitude of 144 miles, the intervening space is far from being in a state of gradually decreasing ionization, as one approaches the earth.

There undoubtedly exist intermediate regions showing various degrees of ionization, much lower than the maximum of the higher region. The hypothesis of these secondary layers of ionization provide an explanation for the various changes in the propagation of wavelengths below 35 meters.

Referring to occasional troubles, such as sudden fadings occurring about 36 hours after solar eruptions, one may conclude that each eruption produces a violent electronic emission, reaching the earth at the observed time of 36 hours later.


These electrons, entering the earth's magnetic field are naturally deflected toward the poles, where they cause an intense bombardment, the first result of this being an extremely deep ionization of the stratosphere. It is then not surprising that the short waves reflected above the polar regions are much more affected than waves traveling along and reflected in regions remote from the poles.

It is known that the Aurora Borealis is equally explained by the Sun's electronic emissions concentrating at the poles and producing the intense ionization, greatly modifying the stratospheric medium as well as the atmosphere itself, in such a manner that the propagation of all radiations, whether luminous or electro-magnetic, is seriously affected.

We cannot say much more now about the development of this hypothetical and perhaps too enthusiastic theory of the Sun's influence over everything happening on earth; it is an important subject which will, no doubt, receive considerable study and development in the near future. Several daring suppositions have been advanced to the effect that the Sun's electronic emissions actually influence not only the health but the mentality of men and other living creatures.

We can no longer laugh at such suppositions; we may now seriously dream of them, although it is difficult to employ reasoning profitably upon this subject, inasmuch as suitably long series of controlled observations do not yet exist.

A Receiver for the "Ultra Highs" J. Gordon Taylor, W2JCR

• IT is generally recognized that the design requirements for 10 meters and downward differ quite radically in some respects from those of standard receivers used on the lower frequencies but there seems to be considerable doubt as to just what these differences are. A brief discussion of a brand-new ultra-high frequency receiver which has just been made available to the public may therefore be of interest to many, particularly to Hams operating in the 5- and 10-meter hands.

the 5- and 10-meter hands.

This new receiver, the Hallicrafters "Skyrider 5-10," provides a range of 25 to 66 megacycles (12 to 4.5 meters), divided into two bands of 25-44 and 38-66 me, with band-switching. The main dial is fully calibrated in megacycles. Band-spreading is ample to make tuning non-critical and for

Note the neat arrangement of the controls on the new Hallicrafter "Skyrider 5-10" receiver.

logging purposes has its own calibrated dial.

The circuit employs nine tubes and includes one R.F. stage, mixer, H.F. oscillator, two I.F. stages (the second I.F. tube also serving as the beat-frequency oscillator), second detector-first audio and A.V.C. all in one tube,

6H6 automatic noise-limiter, audio power

stage, and rectifier.

One of the most important departures from previous practice is the use of an 1852 tube in the tuned R.F. stage. This is one of the new ultra-high frequency tubes which really provides respectable gain as contrasted with little more than unity gain, or even a loss sustained at these frequencies with conventional tubes such as the 6K7, etc. The mechanical and electrical layout of the R.F. circuits is unique in that the total separation between the coil, band-switch and tuning condenser of each R.F. circuit does not exceed one inch, the coils being mounted right at the switch; both of these immediately below the tuning condenser. Each of the three tuned stages is enclosed within

(Continued on following page)

You Do Practical Experiments with Real Equipment

I offer you a new and a limited different type of practical Training for a money many career in Radio and Television. I teach you in a standable style all about the latest Electronics, Facsimile Radio, Radio Set Repair all said the latest YOU PERSONAL COACHING ALL THE WAY.

TRAINING PREPARES YOU FOR GOOD RADIO JOBS . . . at Excellent Pay

No matter if you desire to BE YOUR OWN BOSS in your own business or hold down a good job in Radio, my Training will give you the useful information and knowl-reliable to the control of the property of the work of the work

Read What This Student Says:

EARNED \$250 SINCE STARTING COURSE
"I have only completed one-third of the Sprayberry
Course and I find it very interesting, which makes it
casy to learning several hours of my spare time daily to
studying and servicing, I have made about \$250 gross
studying and servicing. I have made about \$250 gross
Lebanon, Pat the Course." Earl W. Hostetter, R. No. 4,
Lebanon, Pat

YOU GET
PROFESSIONAL
TEST EQUIPMENT
PLUS EXPERIMENTAL OUTFITS

Includes 146 RADIO PARTS
for audic a countrie 5 time Radio
for audic aud

NO PREVIOUS EXPERIENCE NEEDED

Training starts right at the standard of Radio ... makes no difference and the standard of the

SERVICEMEN

I offer Advanced Training for those lready in Radio. Get complete details in my FREE 52-page Book.

REMEMBER—THE SPRAYBERRY COURSE IS SOLD UNDER A MONEY-BACK AGREEMENT

RUSH THIS COUPON FREE BOOK

DON'T DELAY! ACT NOW!

SPRAYBERRY ACADEMY OF RADIO
F. L. Sprayberry, Pres.
245-C University Place. N.W.. Washington. D. C.
Please send me FREE copy of "HOW TO MAKE |
MONEY IN RADIO."

Tear off this coupon, mail in envelope or paste on penny postcard. Servicemen—Check here

for March, 1939

How TURNER
Microphones
•Add Broodcast Quality · Modernize your Rig RER COMP . . at Low Cost

TURNER offers 24 different microphones, streamlined for professional appearance and engineered to assure broadcast quality reports, to enable you to improve your equipment at amazingly low cost. Used by thousands of hams and PA men the world

over.

There's a TURNER mike for every purpose
—indoors or out. With the TURNER Dynamics and Crystals, you reduce feedback,
breakage and blasting troubles. Own a microphone that wins you praise and doubles your
enjoyment. See the TURNER mikes and
equipment. Write today for TURNER'S Free
Microphone bulletin No. 40-D.

-Tear Out and Mail Today-TURNER CO. Cedar Rapids, Iowa Please send me your Free Microphone Bulletin No. 40-D.

Address State

Just Published . . . a NEW RADIO AND ELECTRONIC **DICTIONARY** Containing 3.800 Definitions

THIS RADIO AND ELECTRONIC DICTORNAL PARTY AND ALLECTRONIC DICTORNAL PARTY AND ALLECTRONIC DISTORDANCE AND AND ELECTRONIC DISTORDANCE AND AND ALLECTRONIC DISTORDANCE AND A

BOOK OF ITS KIND—HANDY—EASY TO USE—AND TIMELY.

The RADIO and ELECTRONIC DICTIONARY is new, authentic and printed in a single volume of 300 pages, size 6 x 9 inches. The book weighs two pounds, and bound in durable cloth, shipped anywhere \$2.50 in U. S. A. POSTPAID. Price

Mail remittance by check or money order to RADIO PUBLICATIONS
99 HUDSON STREET

NEW YORK, N. Y.

Do you need = **BINDING POSTS?**

The XL PUSH POST with its Spring Action assures Constant Contact and quiek connection.

Manufactured in All Aluminum Type M at 10c each Aluminum Body Balelin W

at 10c each.

Adminium Body, Bakelite Top Type 81 at 15c each.

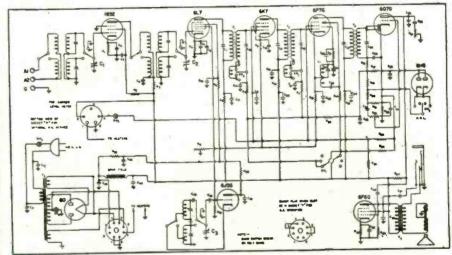
Type 81 completely insulated with Bakelite Insulating Shell type CI at 20c each and proven by 240 hr Salt Spray Test AS NON CORROSIVE our Types CP or Pat 28c each.

Manufacturers and Dealers liberal Discounts

X. L. RADIO LABORATORIES
420 West Chicago Ave., Chicago, III.

A Receiver for the "Ultra Highs"

(Continued from preceding page)


its own individual shielded compartment. The intermediate frequency is 1600 kc., selected because it results in greatly improved image selectivity and widely separates any repeat points that may still remain. Broad and sharp selectivity is pro-vided by means of variable I.F. interstage coupling, the selection being made by means of a switch on the front panel.

The completely automatic noise-limiter is especially important at these frequencies, where ignition noise is ordinarily most troublesome. This system cuts off all noise peaks above the signal level.

That this receiver has the same degree of flexibility as receivers for the lower range is indicated by a listing of the controls. Reading from left to right along the front panel they are: manual R.F. gain, band-switch, tone control and A.C. line, A.V.C.-B.F. o.s.c., broad-sharp I.F. band width, audio gain, B.F.o. pitch control, stand-by switch and headphone jack. The single tuning control is in the center.

An extra refinement and a distinct novelty is the provision for operation either from the 110-volt a.c. line, or from a 6-volt storage battery for portable-mobile work. With special plug removed, the internal power supply is disconnected and by inserting another plug to which the storage bat-tery and an external vibrator supply such as the Mallory VP-554 are connected, the receiver is ready for mobile operation.

In tests conducted at the home station and at those of other New York Hams equipped with outstandingly good 5- and 10-meter equipment, not one could beat out the DX ability of this little receiver on five and ten meters. The only installation to which it ran second was the rig at W2AMJ which consists of a Hallicrafters SX17, plus a 5-meter converter of 2AMJ's own design, in which two of the new ultra-high frequency tubes are used, making a total of 15 tubes in all. Every station picked up on the 15-tube equipment, including 1st, 2nd and 3rd district stations, was likewise heard with the "5-10," but greater volume was obtainable on the big rig.

Hook-up of "5-10" Skyrider

What Do You Think?

(Continued from page 658)

a sort of "reference library." I own a Sky Challenger which I wouldn't part with for any radio. Again may I offer my hearty congratulations on the R9+ S-W magazine,

RICHARD NOEL, Gow School, South Wales, N. Y.

A "Cover" Idea!

I am writing mainly to congratulate you on the F.B. short-wave magazine of which I am an ardent reader. Joe Miller takes the cake, as far as DX is concerned. Here's more luck to you, Joe!

May I criticize one point, though-your Please say you saw it in RADIO & TELEVISION

cover? I think that pictures of S-W Listening Posts would be ideal. Each month print a picture of some notable S-W Post with its

(Unsigned.)

Send that PHOTO! It May Win

One Year's Subscription to RADIO & TELEVISION FREE

for Best "Listening Post" Photo

Closing date March 15 for May issue, etc. The editors will act as judges and their opinions will be final. In the event of a tie a subscription will be given to each contestant so tying.

The "Switched Coil-4"—A Practical Superhet

(Continued from page 671)

simply use good judgment, fixing mounting feet on at least the back partition, providing in some convenient fashion for mounting the oscillator circuit padders, and drilling both plates so that they may replace wafer sections of the switch.

3. Disassemble the specified six wafer switch, then reassemble it, replacing the third and sixth (from the front or shaft end) wafers with the shield partitions. Mount the front-end coils right on wafer pairs, positioned as the photo indicates, with trimmer screws up for convenient adjustment. Connect the high (grid, plate, antenna, etc.) lead selector lugs to associated wafer shorting section terminals so that as the switching progresses from the No. 1 or broadcast position toward and through the higher frequency ranges, the unused coils will be shorted out. Wire in the variable padders for Band 1, 2 and 3 oscillator coils and the fixed padder for Band 4, then test the completed coil assembly for proper continuity, etc.

4. Mount the R.F. assembly, the I.F. transformers, tube sockets, headphone jack and speaker terminal unit on the chassis. Mount the two 2-gang condensers (ganging the individual capacitors conventionally standard insulated couplings) with the bandset above the chassis for broadcast and 160-meter band work or below chassis if the receiver is to be used primarily for short-wove pickup and the bandset items need not be other than direct drive or knob controlled. Carefully cut off the frame extension of the dial assembly, so that with the control assembled on the above-chassis condenser shaft the unit slides tightly over the chassis. Tighten the hub's shaft screw when the inner edge of the dial glass is in

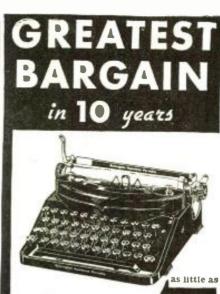
AL COMESS AS ASSESSED AS A SECOND AS A SEC - - ampur 10-1 MOUNT CI-CS NO-DE — 3¥ der 25 -24 REAR 807 TON 94 1

Front panel and chassis details.

approximately vertical line with the front chassis drop.

5. Mount the tanks below chassis (or ganged 20 mmf. units, as the case may be), also the additional antenna-load compensating trimmer if one is used. Mount the potentiometers, then assemble chassis and cabinet-panel together, using the securing nuts for all front drop controls as a means of such assembly, and placing washers (about 1/16 inch thick) between chassis and panel at each control-shaft point so that there will be sufficient clearance to permit the chassis-panel construction to fit properly into the cabinet.

6. Complete the general assembly, mounting the broadcast or regeneration coil as indicated at the 6C8G socket, and placing tie points here and there where necessary for rigid by-pass condenser and resistor support. Wire up the receiver, following the circuit diagram carefully and using shielded (low capacity) leads between front panel potentiometers and associated circuit items. The B plus and A "hot" leads may well be similarly shielded for as much of


their length as possible.
7. The second detector plate circuit must be grounded at the intermediate frequency transformer. Use a mica condenser of from .002 to .005 mmf. value-logically the smallest value which will permit circuit feedback and oscillation.

8. At this point check the operation of the set, using any available A.C. power supply which delivers 6.3 volts for the tube filaments and a well-filtered 200 to 250 volts of B. The power cable may be terminated in a plug designed for connection to the chassis receptacle for genemotor plug-in (i.e., the socket at center right immediately below the genemotor can). Align the I.F. circuits to 456 kc. peak with the regeneration control adjusted for maximum control adjusted fo mum circuit gain (setting just below that for circuit oscillation). Then align the front-end coils at these trimming and padding frequencies:

Band 1—Align at 1400 kc.—Pad at 600 kc. Band 2—Align at 4.0 mc.—Pad at 1.7 mc. Band 3—Align at 10.0 mc.—Pad at 4.5 mc. Band 4-Align at 29 mc.-Pad fixed.

9. With the layout properly adjusted and aligned under A.C. powering, proceed to the construction of the genemotor assembly. The genemotor itself is bolted down securely in the specified shield can for it the can provided with a base mounted plug for receiver chassis connection, a rear wall receptacle (male) for storage battery line connection, and a front-wall mounted three-way switch (for "On-Off-Standby") supporting any necessary filtering items additional to those incorporated in the genemotor item proper, and positioned so that with the shield-can plug in, the switch shaft will line up with (and protrude through) the front-panel switch hole. The switch shaft, with genemotor assembly mounted on the main chassis, should clear this hole and the can should elsewhere be free of chassis and cabinet contact except at one point only-and that point logically near the A minus-B minus terminal of the chassis receptacle. (The grounding is then effected only with plug-in; genemotor can to chassis.) Use of the specified molded receptacle and plug units, by the way, will elevate the can above-chassis so that this single point grounding may be conveniently effected.

10. Connect the genemotor assembly to an energizing 6-volt storage cell, using (Continued on page 687)

Reminaton NOISELESS Portable NOW AS LITTLE AS 10c a day

Imagine a typewriter that speaks in a whisper! You can write in a library, a sick room, a Pullman berth, without disturbing others. And auperb performance that literally makes words flow from the machine. The Remington Noise-less Portable is equipped with all attachments that make for complete writing equipment—it manifolds and cuts stencils perfectly. Furnished in black with chromium fittings.

SPECIFICATIONS

SPECIFICATIONS
Standard keyboard. Takes paper 9.5 inches wide. Standard size, 12 yard ribbon. Makes up to 7 legible carbons. Back spacer. Paper fingers. Roller type. Black key cards with white letters. Double shift key and shift lock. Right and left carriage release. Right and left cylinder knobs. Large cushion rubber feet. Single or double space adjustment. A brand new NOISELESS typewriter, right off the assembly line.

10-DAY FREE TRIAL

For the first time in history you can own a genuine Remington Noiseless Portable for as little as 10c a day or \$3.00 a month. Think of it! The finest Remington Portable ever built at the lowest terms we have ever offered.

And you don't risk a penny! We will send this brand new Remington Noiseless Portable for a TEN DAYS' FREE TRIAL! If you are not satisfied, send it back. We pay all shipping charges.

charges.

REE

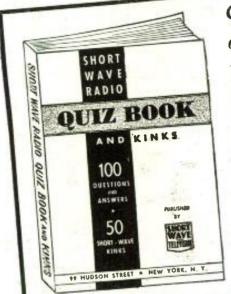
With your Remington Noise-less Portable — absolutely free—a 19-page course in typing teaching you the Touch System, always used by experts. With the help of this course you will find typ-ing the most enjoyable way you ever wrote.

TYPING

SPECIAL

Carrying Case, handsomely covered in DuPont fabric is included with your purchase. The case makes it easy to take your machine anywhere. You can use it on trains, or on your knees at home. Don't delay. Mail the coupon.

MAIL NOW -----


Remington Rand Inc. Dept.300-3 465 Washington St., Buffalo, N. Y.

Tell me, without obligation, how to get a Free Trial of a new Remington Noiseless Portable, including Carrying Case and Free Typing Course for as little as 10c a day Send Catalog.

					-		_	_	•	•	•	-	- "	٠.	-	J	- 3	~	-	b B.	ш	- 1	_
Name						,											,			,			

8	Name	٠		•	٠	,	٠	•	,	٠	,	٠	٠		٠	,	٠	,	,			,		
B	Addre	81	8.	. ,						,														

City.....State.....

Get Any ONE or ALL FR of These Books Absolutely

HERE is a brand new book—with an unusually interesting content. The text prepared by the Editorial Staff of RADIO AND TELEVISION, contains a variety of material which only experts could select and incorporate in such

a variety of material which only experts could select and incorporate in such an excellent volume.

"SHORT WAVE RADIO QUIZ BOOK AND KINKS" cannot be bought—it is sent to you absolutely FREE with your subscription to RADIO AND TELE-sent to you absolutely FREE with your subscription to RADIO and TELE-VISION at the Special Rate of Seven Months for One Dollar. (Old subscribers way get this book by extending their subscription.)

The book contains 64 pages with a heavy flexible colored cover. It measures the book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover. The book contains 64 pages with a heavy flexible colored cover.

Contents of the "QUIZ BOOK"

How to Connect an R.F. Stage Ahead of Your Present Re-ceiver. Questions and Answers Covering
S.W transmitters.
Questions and Answers Covering
S.W Receivers.
Ultra-Short-Wave Transmitters
and Receivers.
Short-cuts and
Wrinkis'.—Short-cuts and
Wractical wrinkles,
Coil
Winding Dats.
How to Add an Audio Amplifier
to a Small S-W Receiver.
DADLO AND TESTERS Dozens of Novel New Hook-Ups for the S-W Experimenter.

Clear diagrams showing how to connect the latest type tubes in place of your old tubes, so as to obtain greater DX. TO a Small S-W Meconver.

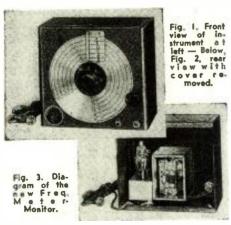
RADIO AND TELEVISION • 99 HUDSON STREET • NEW YORK, N. Y.

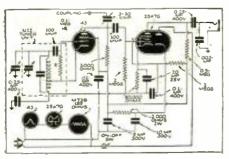
3-W Converters Noise Silencers Power supplies Modulators Best Oscillators Antennas Pre-selectors 5-meter receivers

City.....State....

R&T-3-39

TWO OTHER FREE BOOKS FOR YOU!


SHORT WAVE GUIDE Covers hundreds of Short-Wave questions and answers; illustrates popular Short-Wave kinks; gives instructions for building simple Short-Wave receivers; instruction on the best type of antenna to use; diagram and construction details for building a simple "ham" transmitter; practical hints on Short-Wave tuning.


ABC OF TELEVISION

Contains latest material on Television developments. It covers theory of scanning; simple television receiver, how the eye sees; the photo-electric cell; neon lamps; need for broad channel width in transmission of high-fidelity television signals; cathode ray tube and television receivers; Farnsworth system of television transmission, and other features.

New Frequency Meter-Monitor

NOW that the Federal Communications Commission has ruled that stations must be accurately monitored, some means of checking frequency must be provided.

quency must be provided.

One such means, here illustrated, is the new Guthman U10 Frequency Meter-Monitor. This piece of apparatus can be checked to a very high order of accuracy upon nineteen broadcast band stations required by law to maintain frequency to plus or minus 50 cycles. Of course, it can also be checked with WWV, the standard frequency station. Such calibration is accurate to 6 parts in 850,000, according to the manufacturer's claim.

850.000, according to the manutacturer's claim. Fig. 1 illustrates the 734" accurately calibrated dial which is read against an anti-parallax indicator for the 160, 80, 40, 20, 10 and 5 meter amateur bands. Calibration covers 324 degrees out of a full 360 degree circle 734" diameter, with low frequency bands at inside and high frequency bands progressively toward the outside edge. This gives a maximum effective scale length of 21%" for the outer scale, which is devoted to a vernier scale of 500 divisions, readable to one-half division.

scale of 500 divisions, readable to one-half division. This dial may be rotated either directly or through a 12-to-1 vernier reduction knob. At lower right is the on-off switch and head-phone jack, with input coupling through the small jack at the upper right. The knob and dial at lower left are the zero-setter, or calibration setter. By first setting the main dial to any standard frequency station signal and then adjusting the zero-setter knob to zero beat, oscillation is automatically made accurate for the entire dial scale to closer than it can be read, the manufacturer claims.

Fig. 2 shows a means designed to attain stan

Fig. 2 shows a means designed to attain stability. The frequency determining electron-coupled oscillator circuit comprises a very wide-spread, steatite-insulated, ball-bearing tuning condenser, high-Q 15/41 Litz inductance wound on low temperature-coefficient steatite form, and padding or "swamping" capacity of low-drift construction, completely ceramic-sealed. These units are housed in a tightly closed metal box, the back

of which has been removed for visibility. A "dead air" mass around the frequency determining circuit, which resists temperature changes, is provided by this box, itself enclosed inside the outer cabinet. Stability is further assured by using the preferably continuously running tube heaters as heating elements to maintain temperature within a narrow and stable range, well above room temperature

The fundamental range of the oscillator is 850 to 1030 kc. in order that it may be checked directly against the signals of broadcast stations tuned in on the receiver—or even directly upon the frequency meter in the case of "locals." for it is in itself a receiver. Harmonics of this range cover 1700 to 2060 kc., thus including both new and old 160 meter amateur bands. Through the use of a 43 power pentode as oscillator, it can be run in the frequency-stable range well below maximum rating, and at the same time put out strong harmonics down into the 5 meter band.

External coupling is to the plate of the 43 electron-coupled oscillator, in itself forming no part of the oscillator circuit, and additionally isolated by a small 3.30 mmf. adjustable coupling condenser. To be of maximum use both for measurement of transmitter frequency and for received signal frequency as well, a high-rain pentode functions as a beat-note detector-amplifier coupled to the isolated oscillator plate circuit. This detector amplifier is the pentode section of a 25A7G dual tube, its diode being the power-supply rectifier. A.C.-D.C. operation is provided, not for economy so much as to obtain the best possible supply voltage regulation. Omitting the usual power transformer, which always introduces some regulation problems, operation is direct from the power line, with only the "B" supply filter and rectifier tube as elements to affect regulation, which further increases flexibility besides improving regulation.

The manufacturer states that drift over 24-hour test periods has been unmeasureable—apparently

test periods has been unmeasureable—apparently less than 1 cycle in 1,000,000.

The "Switched Coil-4"-A Practical Superhet

(Continued from page 685)

heavy leads, particularly if they must be overly long. (Voltage drop in the leads will materially affect genemotor output.) Check for hash with the receiver in operation. If it is bad with higher frequency front-end coils in circuit, check the shielding for A "hot" and B plus leads, increase that shielding as much as possible, check for single point genemotor chassis-contact, and if reception doesn't clear up install R.F. chokes in the B plus and A "hot" leads—chokes, by the way, designed for the frequencies over which the hash is really serious and with any A "hot" item of sufficient capacity to handle the genemotor drain on the battery.

Applications

This job makes a perfect receiver for the farm, summer camp, week-end cabin, and whether the user is an amateur, short-wave enthusiast or simply broadcast

Secondly, it is entirely in line with general marine-service requirements, as it covers the important ship-to-ship, ship-to-shore and U. S. Coast Guard radiotelephone frequencies. It is well shielded, and its parts are amply protected against the severe atmospheric extremes which are encountered.

Third, it is just the thing for the truck or trailer or for general mobile application.

Finally, it is a logical design for emergency service-when A.C. power fails or when installations must be set up either at home or in temporary camps during flood and similar conditions.

Note: If this super is to be used in a car and if the vehicle is to be driven in areas affected by municipal ordinances or state laws limiting auto set frequency coverage, some changes in front-end design will be necessary to prevent receiver tun-ing to and through the taboo wavelengths. The individual builder must observe whatever regulations are in effect in his driving area—and should find out from local authorities just what the restrictions are before purchasing the coils for his front-end assembly.

Parts List

PAR-METAL

1—Type HC-9151 steel cabinet (9x15x11 inches)
1—Type C-4524 chassis (10x14x3 inches)
1—Type UC-565 or larger shield cabinet

Half-watt resistors: R2—400 ohms; R1—50.000; R3—50.000; R4—2.000 or 1.000; R5—30.000; R6—300; R7—100.000; R8—1.000; R9—10 megohms; R11—2.000; R12—50.000; R14—50.000; R15—20.000; R16—20.000; 2 watt: R17—400 ohms

Variable: R10—1,000 ohms; R13—500.000 ohms

Type 484 400 volt tubular—C12; C15; C21; C22; all 0.1 mf.

Type 484—05 mf.—C8; C20

Type 284—1 mf.—C10, C11, C13, C14

Type 484—25 mf.—C25

Type 484—066 mf.—C25

Type 484—066 mf.—C25

Type 284—25 mf.—C24, C17

Type 284—25 mf.—C24, C17

Type 284—25 mf.—C16—.001 mf.; C9—.0001 mf.; C18—.002 mf.

HAMMARLUND

C1—C3—both type MC-260 C2—C4—both type MC20 Antenna circuit trimmer, if required—type HF-15 2—APC couplings

CARTER (Gen-E-Motor)

-Dynamotor for 6-volt operation; filtered for A.F. 40 ma., 200 V. or 50 ma., 200 V.

Complete RADIO TRAINING for \$495

Regular \$39.00 RADIO TECHNICAL INSTITUTE Course

AN UNUSUAL OFFER

A limited quantity of R.T.I. \$39.00 radio servicing courses have been reprinted and are offered to you at only \$1.95. These are the latest 1937 courses, complete in every detail with all supplementarial. tary material, and exactly

tary material, and exactly the same as the originals.

Radio is the present-day opportunity field. Hundreds of men with no special talents have studied Radio Servicing for a short time and are now making twice and three times as much money. R.T.1. unique radio training brings rich rewards; you can get ready quickly, inexpensively, easily, and in your spare time for a good job in radio.

ACCEPTED BY INDUSTRY

Forty large radio manufacturers have helped to prepare the R.T.I. course. Just think what this backing by the radio industry means to you. R.T.I. practical training will give you facts and real data you will need on the job. Rundreds of diagrams and illustrations will help you. You will pass quickly from lesson to lesson and in a surprisingly short time will be ready to do real radio servicing.

COMPLETE IN ALL DETAILS

COMPLETE IN ALL DETAILS

No special previous education or experience is needed.
R.T.I. course will give you all the training you need.
The lessons are clear, interesting, easy to master and
use. Fellows who knew nothing about radio before
taking the R.T.I. course are now the leading servicemen in their communities. This is your chance to
obtain this excellent course for only \$1.95.
From the very start you are introduced to practical
servicing equipment and practices. You are told how
to open your own shop or radio store. Lesson 15.
"The Radio Servicing Business," will give you many
practical ideas and hints. The course is so planned
that you will be able to earn spare-time money before
you have reached your tenth lesson. The special \$1.95
price of the complete course can be earned in a
single evening's work.

YOUR GUARANTEE

You are completely protected. We guarantee these courses to be exactly as the original \$39,00 Radio Technical Institute courses. Money back guarantee. References: Liberty National Bank, Chicago.

THREE COURSES IN ONE

R.T.f. course is really three complete essential courses combined. You get training in (1) Practical and Applied Radio: (2) Fundaments of Radio Principles; and (3) Advanced Specialized Training. This is the training that will place you above the average radio servicemen—and you get this training for only \$1.85.

radio servicemen—and you are summer only \$1.85.

There are over 32,000,000 radio sets in use. Over 4,500,000 auto radios atone. You should cash in on this gigantic money market. The R.T.I. casy practical course will pave the way to your success in Radio work.

TELLS HOW TO USE INSTRUMENTS

The training is complete. Everything from simple facts to complex alignment problems. Many servicemen have found that R.T.I. training is excellent for brush up and study of modern servicing methods. This is the best buy in a radio education. Take advantage of the bargein price today.

LATEST DATA

Yes, in the R.T.I. course you will find a complete explanation of A.V.C., how to use an oscilloscope, sound feed-back, resonance phenomenon . every possible fact you must know to be the best servicemen. You get a real radio training. One of the HEST radio courses is yours for only \$1.95.

LIMITED QUANTITY

Hurry your order to us today. There is but a small quentity of the courses left at the special price. You are completely protected with our guarantee. Send total remittance with order, or we will ship C.O.D. Postal money orders, checks, currency, unused stamps accepted. Answer today.

SUPREME PUBLICATIONS, Agents 3729 W. 13th Street, Chicago, Ill.

Please send the complete R.T.I. radio course at the special \$1.95 price.

I am enclosing \$1.95, send prepaid.

Send C.O.D. I will pay mailman \$1.95, plus a few cents postage.

NAME

ADDRESS

CROWE

1—type 124 dial 1—type 28 dial plate 1—type 27 dial plate 4—type 588 or 286 knobs

MEISSNER

-24-8255 rotary switch—SW5-6 -type 24-9204 six-gang coil shorting rotary switch

YAXLEY

1-double circuit phone jack

AMPHENOL

1—RSS8 steatite octal socket; three S8 moulded octal sockets; one PM 4 male receptacle; one PM 5 male receptacle; one S5 chassis recep-tacle or socket

1. Individual R.F. coil trimmers come wired to

Individual R.F. coil trimmers come wired to the coils.
 C.S. C.6, C7 are the Osc. circuit padders.
 Suggested tubes are RAYTHEON, one each of the following: 6J8G; 6K7G; 6C8G; 6V6G.
 By substituting a type 6G6G output tube for the 6V6G, more economical operation will result. A 50 ma. Genemotor may be employed which will easily fit into the PAR-METAL shield box specified. A.F. output will be down to approximately 1.1 watts—entirely sufficient for mobile operation.
 L1 through L8 are the R.F. coils.
 Optional is L11—a shielded JEFFERSON 1-4 ratio interstage audio transformer, single plate to single grid.

 Minimum range extension with the LIHE coils.

Minimum range extension with the U.H.F. coils in connection (31 mc.) is not guaranteed. Every care must be used to keep leads short and direct in the "front end" if this possible extension is to be reached, with the paralleled tuning condenser arrangement recommended.

ALL METAL UTILITY CABINETS

6 drawers 8 drawers		Depth 81/4" 81/4"	Width 6"	3.5 4.5
Bar with	lock and key			
Finished	in wrinkle, olive	green.		

teur's Discount, 40%. Write for complete catalog. Ask your dealer to show you a sample. If he has none, send your order direct.

KORROL RADIO PRODUCTS CO. 350 Greenwich St. Dept. 339,

Headset Headquarters **GUARANTEE** CANNON-BALL

Phones to give absolute satisfaction. Unusually sensitive. Noted for fidelity and clarity of tone. Folder T-3 illustrates complete Cannon-Ball line. Write

C. F. CANNON COMPANY
SPRINGWATER, N. Y.

for March, 1939

RADIO INSTRUCTION

LEARN CODE the RIGHT way!

Don't waste time trying to learn code by yourself! You can acquire real operating skill, easier, quicker and sounder, by the Candler method. When you start with Candler you are started RIGHT, with the correct fundamentals, and make more progress in a few weeks time than you will with months of undirected practice. You learn sound consciousness, with the Candler method, reading lefters instead of dots and dashes and soon you read whole words without strain or effort just as you read print, and acquire the ability to copy behind like the skilled operators on the commercial lines. Write for the FREE Book of Facts! Read how Candler trained thousands of successful commercial and skilled amateur operators. Send for your copy today!

CANDLER SYSTEM CO.

Dept. S-3, Box 331, Asheville, No. Carolina British Address: Room 56, Craven House Kingsway, London W.C.2,

YOUR FUTURE IN

 These growing industries need trained men for sales, service, operation. Your chance for employment and chance for employment and advancement depends on thorough training. National Schools offer you time-tested training. Complete, modern facilities and equipment in the largest trade school in the West. Est. 1905.

NATIONAL SCHOOLS 4000 S. Figueroa Street, Los Angeles

NATIONAL SCHOOLS, Dept. S. RT, Los Angeles Please send free Radio and Television Booklet

T-MMZ	
ADDRESS	
CITY	STATE
W11.	

EARN CODE RIGHT

Always ready—no weather interference beats having someone send to you. Spe range 5 to 40 W.P.M. Radio or Morr fames 5 to 40 W.P.M. Standard with 10 tapes 5 dependent of instructions 83.00 first month. S2.25 each additional month. With transformer and tube socket 5 to per month more. With key and head phones 50c per month extra. S10 deposit or business reduired. Write for dealls today.

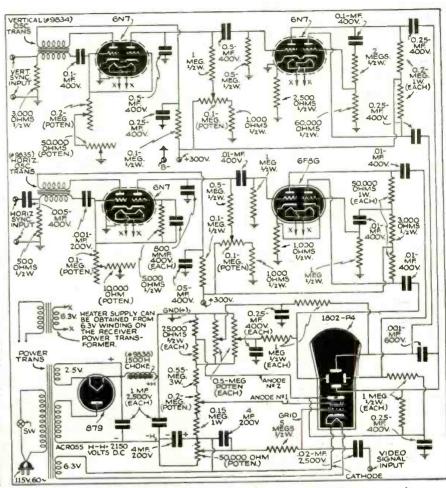
INSTRUCTOGRAPH COMPANY

Dept. SW-3, 912 Lakeside Place, Chicago, III. Representatives for Canada: Radio College of Canada, 863 Bay St., Toronto

AMATEUR RADIO LICENSES

Day and evening classes in code and theory **Home Study Courses**

Hundreds of students now on the air. Results guaranteed. Reasonable, efficient and thorough.


AMERICAN RADIO INSTITUTE
1123 BROADWAY NEW YORK, N. Y.

ENGINEERING,

broadcasting, aviation and police radio, servicing, marine radio telegraphy and telephony. Morse telegraphy and railway, accounting taught thoroughly, 4R weeks' Engin-eering course equivalent to 3 years of college radio work. All expenses low. Catalog free. School established 1874. Dodge's Institute, Turner St., Valparaiso, Ind.

New Tubes for Television

(Continued from page 678)

Hook-up for new RCA 5" dia. Television C-R tube (black and white image) No. 1802-P4. Electrostatic Deflection Type.

p.c. voltages necessary for kinescopes and cathode-ray tubes. The peak, inverse voltage of the 2V3-G is 16,500 maximum, while the peak plate current is 12 ma. maximum.

* New Acorn Tubes

A new series of Acorn tubes-types 957, 958 and 959-are also announced. These have low-current filaments of the coated type and are designed for amateur and experimental use in ultra-high frequencies. All operate on 1.25 filament voltage and a maximum plate voltage of 135.

The 957 is a triode, for use as detector, amplifier or oscillator. It has a moderately high amplification factor. The 958 is a triode, especially designed for use as oscillator or R.F. amplifier in a transmitter; it may also be used as an audio power output tube for phone or sensitive speaker. The 959 is a sharp cut-off pentode, to be used as R.F. amplifier, detector or moderate gain resistance-coupled A.F. amplifier.

An Inexpensive Mike

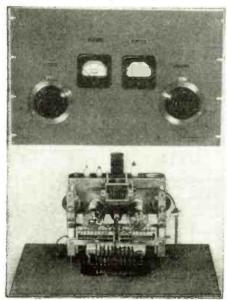
(Continued from page 669)

bulged slightly outward. The cable used was the regular standard crystal cable consisting of a single inner conductor with the shield used as the grounded conductor. The three-prong shielded Amphenol plug was used, as it fitted all of the station's equipment, and provided an ideal shielded installation. The mike unit itself is entirely shielded due to the case and screening. The mike stand is a cheap commercial stand costing around a dollar, but a stand can be built with the standard thread at the top very easily and inexpensively.

The general color scheme was crackle

Please say you saw it in RADIO & TELEVISION

black and chrome, the headlamp being painted over.


The connection between the case stand presented a rather knotty problem, but was finally solved with the use of a mike adapter cut off and soldered to the half of the bracket bolted to the bike light case and bent back. The cable leaving the case was secured to this with a light homemade clamp constructed of about No. 8 wire, soldered.

The sectional view drawing will be found self-explanatory and helpful in construction.

The complete mike cost less than six dollars.—Philip Whitney, Engineer, WJEJ.

NEW RADIO APPARATUS

R.F. Amplifier Kit

New R.F. Amplifier Kit

HERE'S a new 500 watt Radio-Frequency
Amplifier in kit form, announced by Bud
Radio, Inc., which is to be the first of a series of
knock-down units intended for amateur construction. It is designed primarily for operation o5, 10, 20 and 40 meters.
There are no closed loops of any sort in either
the tuning condenser or in the layout itself. This
has been accomplished through utilizing a semiskeleton type of construction.

There are no closed loops of any sort in critical the tuning condenser or in the layout itself. This has been accomplished through utilizing a semiskeleton type of construction.

The structure of this BPA-500 amplifier is such that it will accommodate any of the various low and medium power triodes in push-pull, and while it is conservatively rated at a maximum of 1750 volts and 500 watts plate input, it is equally efficient at inputs as low as 75 watts. This feature enables an amateur, wishing to start moderately, to utilize a pair of low-priced triodes at a low plate voltage; then, at any future date, a power increase is effected by merely substituting more rugged tubes and raising the plate voltage, no mechanical alterations being necessary.

The difficulties of good mechanical layout and machining are eliminated due to predetermined design. Each kit is supplied complete with wire, drilled and formed sheet metal, rack panel, hardware, etc., but less tubes and meters.

New Portable Receiver

THIS RCA four tube, single-band, batteryoperated superheterodyne covers from 550 to
1560 kilocycles. Its tubes are: a 1A7G, first detector and oscillator; a 1N5G, intermediate frequency amplifier (455 kc.); a 1H5G, second detector, Av.C. and A.F. stage; and a 1C5G, power
output. The set requires 1½ volts of "A" battery
and two 45-volt "B" batteries. It consumes but
24 ampere "A" and 9 milliamperes "B," providing au undistorted output of .1 watt or a maximum output of .21 watt. The cabinet is 14" long
by 7½" ligh by 8½" deep, and the set, complete
with batteries, weighs 16 pounds. The antenna
is a built-in loop but external antenna and ground
posts are provided, when a permanent installation
is made and greater sensitivity is required.

Wireless Record Player

A PHONO-GRAPH record GRAPH record player which oper-ates through any radio set with ates through any radio set without any

New Hi-Capacity Law-Valtage Candensers

it, low voltage dry electrolytic condensers in round aluminum cans for use with "A" eliminators, moving picture sound equipment and other similar circuits have been introduced by the Sprague Products Company, Seven units ranging from 500 mf. at 12 volts to 2.000 mf. at 25 volts are now available. These new condensers are known as Type HLV.

New Speed Key

HERE is a new professional type speed key. This "hug" will send out a string of dot signals at a mere flip of a single lever horizontally. This is made possible by means of an accurately designed adjustable pendulum attached to the free end of the lever. The key is fitted contact points, one

with two pairs of large silver contact points, one for dots and the other for dashes. The key is equipped with a cord and jack plug and it is available in a black crackle finish; or at a slight additional charge, in a nickel plated finish. The Martin Flash Key is manufactured by the Martin Research & Manufacturing Corp.

All Metal Cabinet for Valuable Parts

AN indispensable item for locking up parts, including your OSL or SWL cards is this neat eabinet made by Korrol Radio Products Co.
The small size unit measures 9" x 81%" x 6" and has six drawers. the top drawer

and has six drawers, the top drawer having ten compartments for small parts and the two

lower drawers being made into one unit to hold tubes, crystals, meters, pick-ups, camera lenses, films, micrometers, slide rules, etc. Resistors, condensers, bolts, nuts, washers, etc., can be kept in the smaller compartments. It has an olive green wrinkle finish.

Sound specialist, serviceman, experimenter, ham - whatever you are, this book is your "baby"! A radio catalog so packed with values, it takes 188 newsy pages to describe 'eml Here, for quick easy reference, arranged so you can compare brands, is every possible radio part and tool. Plus a P.A. section presenting LAFAYETTE'S big complete line for '39. Everything priced low in this great guide to thrifty buying. Send for your FREE copy of Catalog 73 today. Just mail the coupon.

WHOLESALE RADIO SERVICE 🔐

WHOLESALE RADIO	SERVICE	CO., Inc.
Dept. 4C9-100 Sixth A	ve:, New	York, N. Y.
Rush FREE RADIO Catalog	9 No. 73	

Name			
	PLEASE PRINT		
Address.			
City		C1 .	

PASTE COUPON ON PENNY POST. CARD

NEW CATALOG REE!

Send TO DAY for BIG our 1939 Catalog de-scribing d.ethe com-

Metal line of Racks, Panels, and Chassis. See the many combinations possible with these modern units. Servicemen — Builders — Amateurs — you NEED this catalog! Write at once to

PAR-METAL PRODUCTS CORP. 3529 41st Street, Long Island City, N. Y.

SHORT WAVE CONVERTERS FOR CAR RADIOS

be attached to any car Lan be attached to any car midio BL 800 covers 49-31-25-20-19 and 18 meter bands. Designed for American and Foreign short wave broadcast. Distance ranks 5000 to 10.000 miles. List 5000 to 10.000 miles. List 700 to 10.000 miles 10.000 miles

Price MODEL 800 Super Sensitive police converter with fixed condenser. Covers 1500 to 2600 kc. Two metal tubes, executional condenser covers 1500 to 2600 kc. Two metal tubes, executional condenser covers 151.95 MODEL 500 with variable condenser and illuminated dial. Very sensitive, has two metal tubes. Exceptional distance range. List Price

distance range. List Price S21.95 Jobbers and Dealers wanted ABC RADIO LABORATORIES 3334 N. New Jersey St. Oept. Through the Company of the C

for March, 1939

WESTINGHOUSE UNIVERSAL MOTOR

Shipping Weight 3 lbs. ons: 1/30 Specifications: 1/30
H.P. operates on either
A.C. or D.C., 110 volts,
5000 R.P.M. Rheostat
can be used to vary speed.
Height 34", Length 34",
Width 14", Shaft 4", one
inch long. Can be used to
drive Sowing Machines. Models,
Burfing Lathe, Polishing
Head, Drills, Grindstones,
etc., etc.

MOTOR only\$2,55 MOTOR with Arbor and %" Chuck \$3.55

Add 25c for special packing and mailing anywhere in U. S. A.

Westinghouse **Power Generator**

Manufactured for U. S. Signal Corps 200 Watt. 110 V. AC

A. C. ELECTRICAL POWER

from a Windmill, from available Waterpower, from your Automobile, from your Motorcytel, from your Bleytel, Fostpedals or Manderank (for transportable Radio Transmitters, Strong Floodlights, Advertising Signs); do you want to operate AC Radio sets from 32 V. DC farm light systems; operate two generators in series to get 200 V. AC; obtain two phase and three phase AC, etc., etc.

There Are Over 25 Applications Some of which are:

A.C. Dynamo lighting from eight to ten 20 Watt 110 Volt lamps. Short Wave Transmitter supplying 110 Volts. AC for operating "Ham" transmitter. Operating 110 Volts. AC 60 Cycle Radio Receiver in DC districts. Moor Generator. Public Address Systems, Electric Sirens on motor boats. yachts. etc. Camp Lighting. Short Wave artificial "fever" apparatus. Television. Pelicon Waterwheel for lighting or other purposes. Airplane: for lighting strong searchlights or electric signs. Laborator? work. etc.. etc. 4 to 4 H.P. needed to run generator.

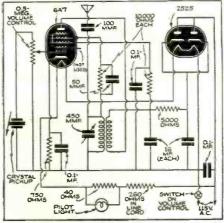
W to 1/2 H.P. needed to run generator.

BLUE-PRINT 22 x28 in, and Four-Page
8/2 x12 in. INSTRUCTION SHEETS
FREE with Generator.

Generator, as described, including four replacement carbon brushes. Blue-print and
Square of State of State of State of State of State
(Replacement carbon brushes bought separate \$1.50 per
set of four. Set of instructions bought separate \$1.00.)
MONET-BACK GUARANTEE MONEY-BACK GUARANTEE

WELLWORTH TRADING COMPANY

560 West Washington Blvd., Dept. RT-339, Chicago. III.



SALESMEN WANTED:

"Wireless Remote" Phono Pick-Up

"Wireless" Record Appearance and Hook-Up of Player.

■ THE advent of wireless remote control tuning


THE advent of wireless remote control tuning for radio receivers has aroused a new interest in low-power transmitters used to link various adjuncts to the radio set. It permits a radio to be located in one portion of the room and to play, through its loud-speaker, recordings which are on the turntable in another part of the house and not connected to the radio by any physical means.

The Allied Radio Corporation is producing the two-tube "Magic Wireless" record player shown. The antenna may be a metal plate inside the record player cabinet, or may be a short length of wire extending from the cabinet. If such wire is placed close to and parallel with the lead-in of the radio receiver, best results will be obtained. It will perform, however, up to twenty feet away from the, set and may be operated from any 110 volt A.C. or D.C. power line.

New Stand-Off Insulators

A COMPLETE line of stand-off insulators made of pure Isolantite has been announced by the Hammarlund Manufacturing Company. This material, according to the manufacturer, is less liable to breakage, chipping and stripped threads than the ordinary porcelains. The tips provided in both plain and jack type, are heavy machined brass, cadmium plated. The base is constructed for two-hole mounting but is removable for single-hole mounting for which cork washers are furnished. The insulators are available in a variety of sizes from ½" to 3½" in length, and ½" or ¾" in diameter.

You Can ELECTROPLATE Easily with a BRUSH!

SOMETHING new for amateurs, fans, set builders—something which gives you the opportunity with which to experiment. Here's an ELECTROPLATING KIT amazingly simple to operate—you just Electroplate with a Brush! Requires only one single dry cell.

NOT A TOY

You can electroplate for profit, hundreds of things in the household—sshtrays, fixtures, water faucets, worn brackets, door knobs, musical instruments, fewelry and silverware and other articles. It's an indispensable piece of equipment to you for plating articles in hotel, apartments, office buildints, medical and dental offices, factories, schools, laboratories, etc. Exactly the same outfit (but larger) is used professionally by electricians, radio service men, automobile repair shops, etc. And for radio work, you can electroplate tarnished receiver parts, chassis, contacts, worn radio parts and accessories.

Put this REAL ELECTROPLATING KIT to use immediately—make it the most useful article in your lab or work bench. And, you can set it absolutely FREM (except for slight mailing cost).

sexcept for SHERI MAILING COSU.

Send your subscription today to RADIO AND TELEVISION for One Year (12 issues) and receive absoluteby FREE one of these REAL ELECTROPLATING RITS

—New subscribers are accepted or you may extend your
present subscription another twelve months under this
offer. Mail your remittance of \$2.50 [Plus 10e for shippling charges on kit) to the publishers of RADIO AND

TELEVISION. (Canada and foreign \$2.85.) You will
promptly receive your FREE REAL ELECTROPLATING

OUTFIT by return mail. Use the coupon below to order
your subscription.

RADIO AND TELEVISION

99 Hudson Street

New York, N. Y

RADIO AND TELEVISION

99 HUDSON STREET, NEW YORK, N. Y.

Gentlemen: Enclosed you will flow my remittance of \$2.50 for which enter my subscription to RADIO AND TELE-VISION for One Year (12 Issues). Send me promptly my FREE REAL ELECTROPLATING OUTFIT. (Canada and foreign \$2.85.) in U.S. add 10c additional to cover shipping charkes on kit.

() NEW SUBSCRIBER

() EXTEND PRESENT SUBSCRIPTION

Name

NEW CATALOGS

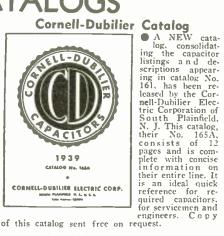
New Condenser Catalog

New Condenser Catalog

THE complete line of condensers offered by Sprague Products is described in a new 16-page catalog. Among the units featured are: the Atom midget dry electrolytics in both single and dual combinations; type HLV high capacity, low voltage aluminum can dry electrolytics; types DR and RP dielectric paper replacements for dry electrolytics; numerous new auto radio units; silvered mica condensers; type CR oil impregnated rectangular transmitting condensers with universal mounting brackets; type PC inverted screw can mounting brackets; type PC inverted screw can mount condensers for P.A. and transmitter work, television and high gain amplifiers; universal replacement condensers and universal motor starting condensers. The new catalog also lists several hundred of the company's exact duplicate replacements for radio receivers and for motor starting.

Burstein-Applebee Catalog

Crystal Devices Catalog


Tube Characteristic Chart

• A N E W tube characteristic chart, just issued by the Arcturus Tube Company, gives complete ballast tube data, in addition to

Meissner's New Catalog

MEISSNER MFG. CO. has issued a new confidential net price catalog in which are inserted several late additional sheets, including one on 1-, 2- and 3-tube kits, and another on special export kits. Also featured are adapter kits. antenna and R.F. coils, beat frequency oscillator adapter kits, a wide selection of 1.F. transformers and oscillator coils, remote control adapters, and eight kits for complete radio receivers. A number of other kits and their components are also described in this book, which has 44 large pages.

of this catalog sent free on request.

Mail Order Catalog

Mail Order Catalog

THE 1939 Montgomery Ward radio catalog lists a wide variety of public address systems ranging from small 5-tube, 12-watt types to mamoth systems employing 16 tubes and providing output up to 100 watts and suitable for large auditoriums. Also included in the book are turn-tables and pickups, microphones and accessories, loud speakers, hearing aids, test instruments, tools and radio set components. A special line of amateur and S.W.L. receivers is also featured, as are a number of parts and units for use in transmitters. The catalog is printed in rotogravure and has 56 large pages.

Hammarlund Catalog

Hammarlund Catalog

HAMMARLUND'S 1939 catalog lists the "MCD" midget condensers, the "MCD" splitstator condensers and the "X" type double-spaced condensers. As well as the "B" type band-spread condensers. There is also a large section on transmitting condensers and another on various types of "micro" condensers. Plug-in coil forms for receiving and transmitting purposes are also featured in various designs, as are Isolantite sockets for standard and Acorn tubes. Other items included in the book are coil and tube shields, flexible couplings, chokes for a number of purposes, intermediate transformers, and trimming and padding condensers. There is also a complete description and price list of the new "super-pro" receivers in models that will tune from 7½ to 240 meters or from 60 to 550 meters.

Taylor Tube Catalog

1939 CATALOG and Manual. 44 pages with index, illustrated. Published by Taylor Tubes. Inc., Chicago, Ill. The new Taylor Tube catalog contains 44 pages of information, including not only the company's various type of tubes but also several highly interesting circuit diagrams. One of the pieces of apparatus described in words, pictures and schematics is a De Luxe all-band transmitter which uses 275 watts plate modulated input. Another unit on which all data is given is a quick band-change 125 watt input transmitter, while another is a 450 watt phone and c.w. job. A 150 watt transmitter and an economical 100 watt grid modulated phone rig, complete with constructional details, are also cevered.

As to tubes, many popular types are described, ogether with their complete characteristics and prices. There is also much general information on testing and selecting tubes and choosing the right tube for specific functions. Ask for No. 111A.

Sound Amplifier Guide

BULLETIN No. 346-D just published by Thordarson Electric Mfg. Co.. presents practical and theoretical information on amplifiers ranking from 8 to 120 watts output. Features of this 32-page book are a high quality phonoradio amplifier with volume expansion and tone controls, and a combination 6-volt—115-volt portable amplifier capable of delivering high undistorted output. Each circuit is complete with diagrams, parts lists, constructional data. Ask for No. 112A.

CARBON FIXED RESISTORS

CONSULIDATE Car-ONSOLIDATbon Resistors are the result of years of research and experimentation to produce a resistor of suitable operating characteristics for the radio trade, They are of solid molded construction, permanently bonded into one compact unit. Resistance variation is maintained at a 5% a verage—and is guaranteed within 10% plus or minus. They are quiet in operation-completely moistureproof and non-inductive, having no capacity effectand maintain their resistance values

over an extremely wide temperature range. Packed in attractive three-color cartons and sold only through recognized parts jobbers.

See Them at Your Parts Jobber's Today!

U. S. LAMPS

The lamp of 100 uses

Scout Signalling Night Bowling Alleys Trailer Lamp Trailer Lamp
Night Motor Boat Races
Auto, Truck and Trailer
Camps
Tractor Light
Camp Light
Barnyard Lighting
Night Fishing
Radio Shacks
Bungalows Bungalows Picnics, etc.

Finite, etc.

Large size—121½" wide, 534" dee ing socket, fitted with 10" silver silver silver, or silver silver, or silver silver, or silver, 534" deep, 15° high includ-" silver plated reflector (no Packed in portable wooden cover, hasp and handles, extension cord and \$2.50 F.O.B. N. Y.

Send for catalog containing full descriptions of this and many other interesting items.

GOLD SHIELD PRODUCTS New York

Dept. RT-3-9 350 Greenwich St.

for March, 1939

. . THESE OUTSTANDING SHORT WAVE BOOKS ARE Now Available AT YOUR DEALE

YOU buy parts, tubes, kits, accessories from your local radio dealer—that's what countless thousands of short-wave fans do. Now through a nation-wide distribution service our numerous books are available at your favorite radio dealer-right where you buy other radio equipment. It's more convenient, saves time and you can inspect the books before you buy. Ask your dealer to show you all the books advertised on this page—they're always in stock.

101 SHORT WAVE

Compiled by the Editors of RADIO & TELEVISION

Here is a worthwhile book that every short wave listener, every short wave fan, and every short wave amateur has wanted for a long time. It gives you the 101 best short wave hook-ups which have appeared heretofore.

100 Illustrations

50c

HOW TO BUILD AND OPERATE SHORT WAVE RECEIVERS

This is the best and most up-to-date book on the subject. It is edited and prepared by the editors of RADIO & TELEVISION and contains a weaith of material on the building and operation, not only of typical short wave receivers, but short wave converters as well.

150 Illustrations
72 Panes

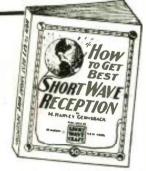
10

MOST POPULAK

SHORT WAVE RECEIVERS HOW TO MAKE AND WORK THEM

TEN MOST POPULAR SHORT WAVE RECEIVERS HOW TO MAKE AND WORK THEM

HOW TO MAKE AND WORK THEM The editors of RADIO & TELE-VISION have selected ten outstanding short wave receivers and these are described in the new volume. Each receiver is fully illustrated with a complete layout, pictorial representation, photographs of the set complete. hook-up and all worthwhile specifications.


75 Illustrations 40 Pages

25c

HOW TO GET BEST SHORT WAVE RECEPTION

M. HARVEY GERNSBACK tells you everything you have ever wanted to know about short wave reception. The author, a professional radio listener and radio fan for many years, gives you his long experience in radio reception and all that goes with it.

40 Illustrations 72 Pages

HOW TO BECOME AN AMATEUR RADIO OPERATOR

By Lieut, Myron F. Eddy, whose experience in the amateur field has made him pre-eminent in this line,

If you intend to become a licensed code operator, if you wish to take up phone work eventually—this is the book you must get.

150 Illustrations
72 Pages

50c

to Becc

O OPERATOR

THE SHORT WAVE BEGINNER'S BOOK

Here is a book that solves your short wave problems—leading you in easy stages from the simplest fundamentals to the present stage of the art as it is known today. It is the only low-priced reference book on short waves for the beginner.

75 Illustrations

25c

LOOK FOR YOUR NEAREST DEALER

For convenience the publishers list below dealers in all parts of the world where our books are available. On your next shopping trip be certain to examine these volumes.

You're sure to want them for your technical library.

Walther Bros., Montgomery
. ARIZONA Sam's Cigar Store, Phoenix

CALIFORNIA-Electric Supply Co., Oakland Radio Supply Company, Los Angeles Radio Television Supply Co., Los An-

Pacific Radio Exchange, Inc., Los Angeles Parties and Supply Co. Los Argies Auto Supply Co. Los Argies Arche Supply Co. Los Argies Arche Radio Supply Co. Los Argies Ventras Parties Parties Diego Western Radio et Co. San Francisco Zack Radio Sweet Co. San Francisco Zack Radio Sweet Co. San Francisco Radio Sweet San San San Francisco Radio Sweet Saline Co. San Francisco Radio Sweet Sal

COLDRADO
Auto Equipment Co., Denver
Interstate Radio Supply, Denver The Edward P. Jud Co., New Haven

DELAWARE
Wilmington Elec. Spec. Co., Inc., Wilmington

FLORIDA

Radio Accessories Co., Orlando GEORGIA Wholesale Radio Service Co., Inc., Atlanta

ILLINOIS

Allied Radio Corporation, Chicago Walter C. Braun. Inc., Chicago Chicago Radio Anparatus Co., Chicago A. C. BrClurg & C. Chicago A. C. BrClurg & C. Chicago A. C. Chicago A. C. Chicago C. Chicago Sears. Roebuck & Co., Chicago Max Stein & Co., Chicago Montgomery Ward & Co., Chicag

INDIANA
Van Sickie Radio, Indianapolis
MASSACHUSETTS
DeWoife & Fiske Co., Boston
The Personal Book Shop, Boston
Wholessie Radio Service Co., Inc., Boston
Library Book House, Springfield
Tremont Elec. Supply Co., Boston

MICHIGAN Rissi Brothers, Detroit MINNESOTA St. Paul Book & Stat. Co., St. Paul

MISSOURI Burstein-Applebee Co., Kansas City Radio Labs., Kansas City Walter Ashe Radio Co., St., Louis Van Sickle Radio Co., St., Louis

NEW JERSEY
Radio Apparatus Co., Newark
United Radio Co., Newark
Wholesale Radio Service Co., Inc.,
Newark

NEW YORK Fort Orange Radio Dist. Co., Albany Wholesate Radio Service Co., Inc., Bronx. Bronx Radio Service Co., Inc., City

City
Wholesale Radio Service Co., Inc., New
York City
H. W. Wilson Co., New York City
Radio Parts & Equipment Co., Rochester
M. Schwartz & Son, Schenectady

OHIO College Book Exchange, Toledo J. K. Giii Co., Portland
PENNSYLVANIA
Radio Electric Service Co., Philadelphia
Cameradio Co., Pittsburgh

WASHINGTON
Seattle Radio Supply Co., Seattle
Wedel Co., Inc., Seattle
Spokane Radio Co., Spokane
WISCONSIN
Radio Parts Co., Milwaukee

ARGENTINA Radio Revista, Buenos Aires

McGill's Authorized Agency, Melbourns

BELGIUM
Emil Arens. Brussels

Emii Arens. Brussels

CANAOA
T. Eaton & Co., Winnipeg, Man.
Electrical Supplies. Ltd., Winnipeg, Man.
Wholessle Man.
Radio Supply Winnipeg, Man.
Caronito, Ont.
Radio Trade Supply Co., Ltd., Toronto, Ont.
Canadian Electrical Supply Co., Ltd., Montreal, P. Q.

BRAZIL
Agencia Soave, Sao Paulo
CHINA
China News Co.. Shanghai
International Booksellers, Ltd., Shanghai

hai
CUBA
Diamond News Co., Havana ENGLAND Gorringe's Amer. News Agency, London Toute La Radio, Paris

GERMANY Rehr G.M.B.H. SW15. Berlin NW No. 7

Radio Peeters, Amsterdam, Z. Empire Book Mart, Bombay Empire Book Mart, Bombay

MEXICO

American Book Store, Mexico, D. F.
Central De Publicaciones, S. A., Mexico, D. F.
Jaques Saivo, Mexico, D. F.
Johnson, Mexico, D. F.
Johnson, Mexico, D. F.
Johnson, Mexico, D. Johnson, Jo

IF YOUR DEALER DOES NOT CARRY THESE BOOKS, ORDER DIRECT FROM US. FILL OUT COUPON BELOW, SHIPMENT WILL BE MAGE IMMEDIATELY.

ĺ	POPULAR BOOK CORP. R&T-3-39 99 Hudson Street. New York City.	
l i	Gentlemen: I enclose herewith my remit- tance for for which please send me the following books:	
[
[
	Name	
ĺ	CityState	
1	(Send remittance in form of check or money order. If letter contains cash or unused U. S. postage stamps, register it.)	

99 HUDSON STREET . NEW YORK, N. Y. POPULAR BOOK CORPORATION Publishers

The Martian Flash

(Continued from page 657)

on around him, he only knows one thing now, and that is to get to the Auto-tribunal as fast as possible. If he is near the Tribunal he will walk; if not, he will use the speediest

conveyance to bring him there.

Now, the Tribunal itself, is a very strange affair, usually a great circular room. The most astonishing thing about the Automatic-Tribunal is that there is no living Martian in it except the culprit or culprits, in case there might be more than one, which seldom happens. The minute the culprit enters the Tribunal he is directed into a special chair mounted on wheels. He is then automatically guided past several hundred registering and recording apparatus. Questions are asked him at each stop which he is forced to answer. He cannot lie, of course, as apparatus similar to your old lie-detectors would immediately show up any deception. What the authorities are interested in most

is how he got that way.

It should be obvious that, as every citizen on the planet knows in advance that he cannot commit even the slightest crime without instant apprehension, the authorities are always concerned with so-called throwbacks, who commit crimes simply because something went wrong with their mentality—the first stage of a break-down or something akin to what you would call insanity. For this reason, the Auto-tribunal's main duty is to examine the culprit's mind and after the reason has been found out, other machines, therapeutic and otherwise, which he will pass in due time, try to correct his deficiency.

Martian law is very stringent; so if it is found that there was no mental breakdown, and that the reason for the crime may be, let us say, ennui or boredom-which is a terrible thing to commit a crime for in Martian eyes-then of course the victim is punished. If it is not his own fault, as for instance, approaching insanity or such, there will be no punishment but the chair on which the defendant is riding will be shunted into a laboratory where the patient is treated until restored. But let us say the offense was willful. Then there will be punishment, and as your old saying goes—"pun-ishment to fit the crime." For slight cases, this may be nothing but disagreeable shocking, or the inhaling of disagreeable radioatomic odors, which will make the victim retch for hours at a time. This in itself is a terrible punishment for most Martians.

There are a number of other psychological punishments even more severe which you could not possibly understand, as you do not comprehend Martian mentality. Thus for instance, the culprit may have to look at certain symbols engraved on a plate, staring at them fixedly for fifteen minutes. To you, this means nothing and would be considered a joke and no punishment at all. To a Martian, this is heart-rending and soul-racking. There are other punishments of which most are psychological in nature which you could not understand and frankly, I do not myself understand as yet. Finally, the extreme penalty, is death. Atomincing, as it is called here, whereby the con-demned is led into a sort of electronic tube and placed between two electrodes which then blow the victim into atoms.

For a number of psychological reasons, the Martians do not wish to become contaminated with a fellow Martian who has thus been atominced, so the remains stay right in the electronic tube which is fired electro-magnetically out of the gravitational region of the planet. When the tube reaches about two hundred thousand miles above the surface of Mars, it explodes and the remaining atoms of the unlucky Martian are

I was living on the planet for about two months when I innocently enough touched a certain object—the likeness of a famous deceased Martian ruler—with my bare hands. This is a terrible offense on Mars. It is usually punished most severely. In my case this was of course, only pure curiosity, and no emotion stirred inside me. Nevertheless, an attendant saw me and the emotion set up in his mind immediately released the usual Martian Automatic Police. The Martian had no trouble in explaining that the emotion was not due to his doing anything wrong, but rather in seeing me commit a crime. In a few minutes I was apprehended by an Automatic guard of which they have a few for emergency cases, and in no time I was whisked to the Auto-tribunal. Not being a Martian, the hypnotizing-paralyzing ray did not work on me very well and I still had some of my faculties left, although I was pretty numb, Still, not numb enough to know that if something went wrong I would probably be atomineed and blown into smithereens. You see, Martian justice can never possibly go wrong. That is, Martian justice for Martians. But I, not being a Martian, was in a terrible predicament, because it was quite possible that there might be, for the first time in millions of years, a miscarriage of justice on account of this.

Amongst some of the things which I had in my pocket, was an old fashioned Earthian menthol nasal inhaler and a piece of garlic, which I had carried with me by pure accident from the Earth. I quickly opened the inhaler and blew into it. Then I started to chew the garlic, figuring that perhaps the combination, totally unknown on Mars, would do something to the fearful, sensitive machinery. And that is exactly what happened. When I came to, one of the machines (which I found out later, recorded certain bodily odors and perspiration, to get an index on one's emotion), just blew up and short-circuited! Then there was a terrific commotion and the whole Auto-tribunal seemed to go "hay-wire" instantly. Tubes blew out, sparks played all about, lights flashed and general pandemonium broke loose! You have never seen such terrific displays of a technical fracas in all your born days. And all on account of a simple piece of garlic for which the Auto-tribunal was not prepared. In the ensuing confusion I made my way out of the Tribunal and had no trouble to find my Martian sponsor to whom I unfolded the foregoing events.

The sequel to the story is that I was instantly acclaimed a great hero, being the only living person who had in twenty million years upset the orderly working of the Auto-tribunal! This incident however, decided the Martians, that mere Earthlings could not be trusted alone on the planet, and now I am always accompanied by an automatic guard who calls back to Headquarters what is going on from instant to instant. It is therefore not very likely that I shall again upset an Auto-tribunal as long as I ani here.

> We Want Constructional Articles On Television Receivers and Facsimile Receivers

Write the Editors and give outline of article, with sketch of circuit. All articles accepted and published will be paid for.

I believe ...

that a fair and square deal, every time, is the only way to keep up a successful business. That must be right, because since 1925 more and more men have been buying their radio equipment from me.

You, too, will find it to your advantage to deal with me whenever you want to buy a new receiver, transmitter, or any other equipment.

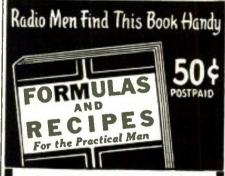
equipment.

My personal attention to your wishes, fair trade-in allowances, reasonable terms for your convenience, prompt safe delivery, and above all—a sincere desire to give you full co-operation—is your assurance of complete and lasting satisfaction.

Be sure to write to me.

Bill Harrison, W2AVA

TIME PAYMENTS? Check these easy terms-


	Cash	Down	Paym		
Receiver	Price	Payment	8 01	12	
NC-101-X HQ-120-X	\$129.00	fin ne			
		\$19.96	\$14.21	\$9.66	
NG-100A	120.00	18.48	13.22	9.00	
8-16, Breting 49, NC-					
81-X, NC-80-X	99.00	15.34	10.90	7.41	
HQ-120	117.00	18.30	12.86	8.75	
SX-16, speaker	123.00		13.47	9.16	
SX-17, speaker	149.50	22.60	16.53	11.25	
RME-69	152.88	24.10	16.78	11.41	
RME-70	138.60	21.10	15.31	10.41	
I can change these t	erms to	suit your	conven	ience	

also terms on all Halfierafters, Hammarlund, fational, RME, Howard, Sargent, Breting, Patterson, Temco, RCA, Thordarson, Utah, etc., leceivers, Transmitters and Kits.

OUR USED DEP'T

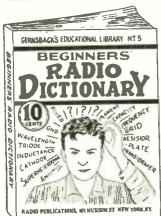
many good reconditioned and guaranteed trade-Receivers and Transmitters at attractive prices od values! Send stamp for list,

ARRISON RADIO CO. 12 West Broadway, New York City

Here Is the Contents of the Book

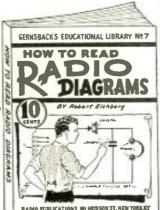
Here Is the Contents of the Book

1. Adhesives: Glues, Cements, Gums, Mueilages,
Lubricants, 2. Cleansing: Stain Removers, Paint
Removers, Bleaches, Cleaning Fluids, 3. Metal
Craft: Coloring, Oxydizing, Plating, Repairing,
Welding, Polishes, Alloys, Rolders, Amalgams,
Paints: Colors, Stains, Varnishes, Enamels,
Lubricans, Charles, Printing, Paint,
Remoring, Fathing, Drilling, Brint, Remoring,
Remoring, Etching, Drilling, Brint, Remoring,
Riowing, Etching, Paraway, Grint, Remoring,
Riowing, Etching, Paraway, Brinting-Polishes,
Finishes, etc. 7. Inks: Recipes, Bradiestors, Ink
Stain Removers, Special Inks, Colored, Indelihle, Sympathetic, Invisible, Hectograph,
Photography: Developers, Emulsions, Fipers,
Sensitizing, Toning, Printing, Photographic Pacer, Blueprint Paper, 9. Antidotes for Poisons,
Remedies for Burns and Scalds, Distinfectants;
Hydrometer, Grundents, Emergency Remedies,
Home Remedies, 10. Preparation, Manipulation,
Handling, Mixing, Measuring, Wetching, Filtering, Straining Solutions; List of Technical Substances; Emulsifying; Use of Hydrometer, Use of
Thermometer; Tables of Weights and Measures,
Decimal Systems, Used Tables.


TECHNIFAX. Division BC-339

TECHNIFAX, Division RC-339 560 W. Washington Blvd.. Chleago, Illinois

TECHNIFAX, Division RC.338
SSGW, Washington Bivd., Chicago, Illinois
SGGWentern: Enclosed please find SOc (rherk,
morey compared to the compar


FOUR NEW 10 ¢ RADIO BOOKS

R ADIO FANS EVERYWHERE—these little ten cent text books give you an excellent foundation for the study of radio. They are clearly written, profusely illustrated and contain over 15,000 words in each book. You'll be amazed at the wealth of information these volumes have. They are handy for review or reference books.

FAMOUS GERNSBACK EDUCATIONAL LIBRARY

ADDS FOUR **NEW BOOKS!**

NO. 7-HOW TO READ RADIO DIAGRAMS

NO. 5-BEGINNERS' RADIO DICTIONARY

Are you puzzled by radio language? Can you define frequency? Kilocycle? Tetrode? Screen grid? Baffle? If you cannot define these very common radio words and dosens of other. more technical, terms used in all radio magazines and instruction books, you need this book in your library. It's as modern as tomorrow—right up to the minute. It tells you in simple language just what the words that puzzle you really mean. You cannot fully understand the articles you read unless you know what radio terms mean. This is the book that explains the meanings to you. Can you afford to be without it, even one day longer?

GERMSBACK'S EDUCATIONAL LIBRARY Nº 6

HOW TO HAVE

All of the symbols commonly used in radio diagrams are presented in this book, together with pictures of the apparatus they represent and explanations giving an easy method to memorize them. This book, by Robert Eichberg, the well-known radio writer and member of the editorial staff of RADIO-CRAFT magazine, also constains two dozen picture wiring diagrams and two dozen between the diagrams of simple radio sets that you can build. Every diagram is completely explained in language which is easily understood by the radio beginner. More advanced radio men will be interested in learning the derivation of diagrams, and the many other interesting facts which this book contains. WIN \$10

by suggesting a title for a new Gernsback book! Each of these books gives full

PRIZE WINNERS

ALFRED CETTIE Seattle, Wash. Title: ALL ABOUT AERIALS, Beek 4 RUDY RUZICKA St. Louis, Mo. Title: BEGINNERS' RADIO DICTIONARY, Book 5 KENNETH WARNER
Burbank, Ohio
Title: HOW TO READ RADIO DIAGRAMS, Book 7

GERNSBACKS EDUCATIONAL LIBRARY Nº 8

RADIO PUBLICATIONS IOI HUDSON ST, NEW YORK NY

NO. 6-HOW TO HAVE FUN WITH RADIO

AMO PUBLICATIONS FOR HUBSON STATEW YORK, KY

Rus. v—nuw lu nave pun with habits

Stunts for parties. practical jokes, scientific experiments
and other amusements which can be done with your radio
set are explained in this fascinating volume. It tells
how to make a newspaper talk—how to produce silent
enusic for dances—how to make visible music—how to
make a "silent radio" unit, usable by the desfenced
how to make toys which dance to radio music—sixteen
ciever and amusing stunts in all. Any of these can be
done by the nortee, and most of them require no more
equipment than can be found in the average home. Endtess hours of added entertainment will be yours if you
follow the instructions given in this lavishly illustrated
book.

Other Titles In This Series!

OTHER INTES IN INIS SERIES:
each on a popular subject—are available. The titles are:
No. 1—HOW TO BUILD 4 DOERLE SHORT-WAVE
SETS
No. 2—HOW TO MAKE THE MOST POPULAR ALLWAVE 1- AND 2-TUBE RECEIVERS
No. 3—ALTERNATING CURRENT FOR BEGINNERS
No. 4—ALL ABOUT AERIALS

BOOKS ARE ALL UNIFORM

Every host in the GENNSBACK EDUCATIONAL LI-BRARY has 32 pages—with illustrations varying from 30 to 66 in number. Each title volume contains or 15,000 words. Positively radio's greatest book buys! If you do not think these books worth the price asket return them in 24 hours and your money will be instantly

RADIO PUBLICATIONS

NEW YORK, N. Y. 101 HUDSON STREET

NO. 8-RADIO FOR BEGINNERS

HUGO Gernsback, the internationally famous radio pioneer, author and editor, whose magazines. RADIO & TELESVISION and RADIO-CRAFT are read by millions, scores another triumph with this new book. Any beginner who reads it will get a thorough ground work in radio theory, clearly explained in simple language, and through the use of many illustrations, Analogies are used to make the mysteries of radio as clear as "2+2 is 4". It almost a contains diagrams and instructions for building simple radio sets, suitable for the nortice. If you want to know how transmitters and receivers work, how radio waves traverse space, and dozens of other interesting facts about this most modern means of communication, this is the book for you!

MAIL COUPON TODAY!!

RADIO	PUBLI	CATIO	NS. D	ept. F	&T-3-3 K, N.	9 Y.
book n	nen: Plea: umbers ci book bei	reled l	below.	iately,	POSTP enclosing	AID, the
:	1 2	3	4 5	6	7	8 [
☐ Sen				new	10e pul	olications.
Name						
Address						
Remit you se	nd cash	or u	noney o	J. S.	postage	letter if

Getting Started in Amateur Radio

(Continued from page 681)

coupling of the transmitter to an aerial. However, as we do not yet have a license, this will not be needed for some little time. Construction of the modulator and aerial coupling units will follow in succeeding parts of this series.

Parts List

HAMMARLUND

1—Type MTC-150-B tuning condenser, 150 mmf. double-spaced, C3
1—Type MTC-100-C condenser, 100 mmf. C2
1—Type MTC-250-C condenser, 250 mmf., C1
4-4-prong isolantite plug-in coil forms
3-4-prong isolantite sockets
2-5-prong isolantite sockets
1-7-prong isolantite socket
1—Type MC-20-SX variable condenser, C4
2—Type CH-X R.F. chokes, RFC1 and RFC2

BI II EY

1—Type B5 7 mc. crystal 1—Type LD2 3.5 mc. crystal

TRIPLETT

1-Type 323 0-150 M.A. meter

SPRAGUE

1—.001 mf. mica condenser, C5 3—.002 mf. mica condensers, C6. C7, C8 2—Type EC-8 8-mf. electrolytic condensers, C9. C10

I.R.C.

1-50,000 ohm, 2 watt resistance. R1
1-15,000 ohm, 2 watt resistance. R2
1-15,000 ohm, type DHA wire-wound resistor with variable tap, R3

RCA RADIOTRON

Type 59 tube, V1 Type 46 tube, V2 Type 82 tube, V3

YAXLEY

1—Type 762 2-pole, 2-throw switch, SW1 1—Type 10 1-pole, 1-throw switch, SW2

JEFFERSON

1—Power transformer, type 465-151, T1 1—Filament transformer, type 464-191, T2 1—Filter choke, type 466-410, CH1

CORNISH WIRE

1—¼-lb. spool No. 22 D.C.C. wire 1—¼-lb. spool No. 18 bare tinned wire 1—½-lb. spool No. 12 bare tinned wire 1—Roll No. 18 book-up wire

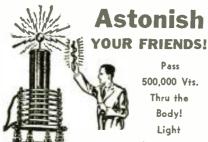
MISCELLANEOUS

2—Wooden or hakelite panels, 7 x 15 x 3/16" th.
2—Wooden or bakelite panels, 4 x 15 x 3/16" th.
4—Wooden panels, 4 x 6 3/6 x 1/2" th.

BOOK REVIEW

RADIO TROUBLE-SHOOTER'S HANDBOOK, by Alfred A. Ghirardi, B.S., E.E. Stiff covers, size 9" x 111/2", 518 pages including index, illustrated. Published by Radio & Technical Publishing Co., New York City.

New York City.


The first 275 pages of this book are allotted to a description of actual symptoms and remedies for common troubles for more than 3313 models of 177 different makes of radio receivers.

The center section is devoted to a line of intermediate peak frequencies of more than 15,000 models of superheterodynes. Other sections deal with a cross-index of model numbers of American RCA and RCA-Victors with those of corresponding American G.E., Westinghouse and Graybar sets and with those of corresponding Canadian sets of the same makes. This is followed by a "trouble-shooting" chart for radio receiver troubles, an auto-radio installation and car ignition system data chart, wiring diagrams of 107 different models of 27 makes of cars and much other material, including RMA standard color codes, a directory of radio manufacturers, and useful radio and servicing formulas. formulas.

formulas.

The book will be a valuable addition to the library of any man who is engaged in the installation or servicing of radio receivers.

RADIO & TELEVISION

500,000 Vts. Thru the

Body! Light

Lamps, etc.

DATAPRINTS

SHOW YOU HOW! 20c Each in Order for 10

FREE with order for \$1.00 or more—"20 Tricks with H1-Freq. Colls" (40c separate) Television Hook-ups "Sight & Sound" . . 40c

Order with other prints; see special price below and save.

Solenoid & Magnet Data-Get Our List! 20 Telephone Hook-ups -- Build Your Own . . 40c

RADIO CONTROL FOR MODEL BOATS. PLANES, ETC.

Circuit data

S-W DIATHERMY (Artificial Fever)

Induction PIPE & ORE LOCATOR

Construction Data40c

You NEED these DATAPRINTS!! 40c Each.

Electric Pipe Thawer.
100 Mechanical Movements.
20 Motor Hook-ups.
20 Simple Bell Circuits.
Welding Transformer,
2 K.W.

Special Prices: 4 prints \$1.00; 10 for \$2.00; 40c each, single orders.

The **DATAPRINT** Co.

Lock Box 322A

RAMSEY, N. J.

BOOK REVIEW

THE RADIO AMATEUR'S HANDBOOK, by the Headquarters Staff of the A.R.R.L. 560 pages, illustrated, size 93/4" x 61/2", paper bound. Published by the American Radio Relay League, West Hartford,

the American Radio Relay League, West Hartford, Conn.

The 1939 edition of The Radio Amateur's Handbook contains over 300,000 words, as well as some 815 illustrations, 50 charts and tables, and 87 equations and formulas. The material has been thoroughly revised and more than thirty pieces of new equipment were designed, built and tested to furnish data for the text.

The equipment described is based on time-tried circuits and layouts, and features the dependable rather than the merely novel. Vacuum tube tables have been considerably expanded and data on more than 400 types of tubes is given. Among the additional material are tables for control and regulator tubes, and for cathode ray tubes. Treatment of fundamental antenna systems and other important phases of radio have been given a fresh approach and greatly enlarged.

The major chapters deal with receivers, transmitters and radio telephony; they contain the bulk of the new equipment.

This edition is dedicated to the late Ross A. Hull, distinguished amateur, who was accidentally killed while experimenting with his apparatus.

Let's Listen In with Joe Miller

(Continued from page 663)

winter peak, upon the regular Tues, and Fri. 11 p.m.-12:30 a.m. schedule. Reported by G. C. Gallagher, W6, also by Ye Ed. A catch well worth digging in the 40 meter ham band for, and FO8AA should peak in February.

BELGIAN CONGO-Radio Leopoldville, 6.14 mc with a Sunday schedule of 5:35.7 a.m., reported by Nick Stahevitch, W6, at 6:50 a.m. FB! OPM, 10.14 mc., also at Leopoldville, has been heard recently at 3:20 and 4 a.m. here, but nut with the strength they had several years ago.

ANGOLA—CR6AA, at Lobito, and reported once as on 13.00 mc., is operating on both 7.177 and 7.614 mc. during their regular schedule. The 7.177 mc. signal is, surprisingly, the easier one to log, though inside the 40 meter amateur band!

NEW ZEALAND—ZMBJ, aboard the S.S. Awatea, and counting, when OSL'd, as New Zealand, has just sent a card to Murray Buitekant stating they will no longer confirm reports on their inverted speech transmissions. As that is their main fare, it will henceforth be rather difficult to elicit a card for a report, unless one is fortunate in tuning in ZMBJ when they happen to be using clear speech.

Mr. N. Stahevitch. W6. has reported a test transmission of a new Irish station on 6.19 mc., located at Moydrum, at 3:30 a.m. Nice DX to be first to hear, from West Coast. OM!

TRIPOLI—ICK. 9.46 mc., heard very FB at 4:15 p.m., during a holiday afternoon, with a man and woman speaking Italian, clear speech. Tripoli is in reality only a town in Libya, an Italian colony

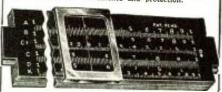
Static-Free Radio

(Continued from page 647)

of our regular broadcast stations, the transmission has been very much improved in a great many sections of the country and thus the static-free qualities of the new system are not so important as perhaps some of the other features, such as multiplex transmission possibilities and the highfidelity feature.

It is interesting to note that the new .-m." wave can be made to do many unusual tricks, such as transmitting voice and facsimile signals simultaneously. Thus on one wave you can receive a musical program and a facsimile reproduction at the same time, a suitable facsimile reproducing machine being used, of course.

The new receivers, it has been announced, combining units for reception of the regular broadcast channels, as well as the new "f.-in." waves, will cost no more than the present average receiver when they are produced on a quantity basis.


The present-day shortwave receivers, or all-wave receivers provided with a shortwave section, cannot tune in the "f.-m." wave; but a special receiver has to be used.

As aforementioned, experimenters and Hams have intercepted the "f.-m." waves, however, with super-regenerative sets. Station W2XMN will relay the programs of John V. L. Hogan's high-fidelity station, WQXR. Mr. Hogan, according to reports, has filed a petition with the F.C.C. for permission to build an "f.-m." station in New York City.

Owners of the present type radio receivers, whether for regular broadcast waves or for short waves, need not worry that our present regular broadcast stations will swing over to the new "f.-m." system overnight, as it will take a long time to do this, even provided that our broadcast systems should decide to adopt the Armstrong system. So if you have been contemplating the purchase of a new receiver of standard type, you can rest assured that you will have your full service out of it before any radical change in our present broadcast station system will have taken place.

A PROFESSIONAL SLIDE RULE PRACTICAL, EDUCATIONAL, TIME SAVER

Features: Nickel Sliver framed indicator with integral friction springs. Scales calibrated directly on well-perature or humiding accuracy regardless of temperature or humiding accuracy regardless of temperature or humiding accuracy regardless of temperature or humiding temperature of printed on reverse side of rule for peady reference or teaching. Each rule with a durable pocket carrying case for convenience and protection.

offer an eight inch, white wood, accurate slids with A. B. C. D. CI and K Scales, a 20-page of offer an eight of the control o

STURDY BINDERS

Or any size magratics.
Covered with black correct
gated fabricoid. Has two
stamped metal ends with
Magratines can be apparators.
Magratines can be a light of the conand removed in a light of the conlight of the conand removed in a light of the conand re

STOPPANI COMPASS

A Precision Instrumer made in Belgium. Pur chased by the U. S. Government at more than \$30.00 each. Ideal for Radio Experimenter's Laboratory, also may be used as a Galvanometer for detection electric currents from the electric currents for the second of the control of the co Also used by hunters and surveyors.

Send for catalog containing full descriptions of these and many other interesting items.

GOLD SHIELD PRODUCTS

Dept. RT-3-9 350 Greenwich St.

Our new Catalog describing over thirty-two books in the "How to Make More Money" field has just come off the press. This catalog describes each book in detail. It enables you to select one or more books which will meet your require-ments in an attempt to improve yourself financially.

Many of the books in the NATION-AL PLANS INSTITUTE catalog tell you how to start a spare- or fulltime business of your own.

Write today for your FREE copy of the "NPI" Book Catalog—address a one-cent postcard to Dept. RT-339—and mail it today.

ı

NATIONAL PLANS INSTITUTE 246-T FIFTH AVENUE, NEW YORK, N. Y.

for March, 1939

COMMERCIAL NOTICES

Under this heading only advertisements of a commercial nature are accepted. Remittance of 10c per word should accompany all orders. Copy should reach us not later than the 10th of the month for the second following month's issue.

AGENTS WANTED

300% PROFIT SELLING GOLD Leaf Letters for Store Windows; Free samples. Metallic Co., 446 North Clark, Chicago.

CORRESPONDENCE COURSES

CORRESPONDENCE C O U R S E S and educational books, silently used. Sold. Rented. Exchanged. Ail subjects. Satisfaction guaranteed. Cash paid for used courses. Complete details and bargain catalog free. Send name. Nelson Company, 3490 Manhattan Building, Chicago.

INSTRUCTION

RADIO ENGINEERING, BROAD-casting, aviation and police radio, servicing, marine and Morse telesraphy taught thoroughly, Ail expenses low. Catalog free. Dodge's Institute, Colt St., Valparaiso, Ind.

MISCELLANEOUS

IMPERIAL ELECTRIC RAZOR.
absolutely guaranteed. \$1.59 postpaid.
Kenneth W. Bailey, 815 West Wayne,
Ft. Wayne, Indiana.

MOUNTED STEER HORNS SIX feet spread and good blowing horns for sale. Lee Bertillion. Mincola, Texas.

7 MILLIAMMETER, HEAVY RUB-ber insulation, high voltage lacquered cable, suitable for transmitter, 2c per foot. Gold Shield Products, 350 Greenwich St., New York City.

PATENT ATTORNEYS

INVENTORS—PROTECT YOUR rights before disclosins your invention to anyone. Form "Evidence of Conception"; "Schedule of Government and Attorneys' Fees" and instructions sent free, Lancaster, Allwine & Rommel, 436 Bowen Building, Washington, D. C.

QSL-CARDS-SWL

100 NEAT SWL CARDS PRINTED with your name and address sent post-paid for \$1. Bunch of samples and RST Chart for five cents in stamps. WiBEF, 16 Stockbridge Ave., Lovell, Mass.

RADIOS

PLANS 18 TESTED (RYSTAL sets, SW record 4250 miles, with "Badiobuilder"—year, 25c. Laboratories, 7700-A East 14th, Oukland, ('alifornia.

SHORT WAVE RECEIVERS

USED DOERLE'S, D-38, BS-5, 7C, reconditioned by factory, 40% off. See January, 1938 Short Wave & Television for description, Kusterman, 68 Barelay St., New York.

SPECIAL EQUIPMENT

AMATEUR AND COMMERCIAL radio and electronic equipment built to order. High quality, reasonable prices. Correspondence invited. Markli Engineering Co., Annapolis, Md.

SONG POEMS WANTED

WANTED ORIGINAL POEMS, songs for immediate consideration. Send poems to Columbian Music Publishers. Ltd., Dept. K49, Toronto. Can.

TELEVISION

TELEVISION EXPERIMENTAL KIT \$9.50. Arthur Pohl, 4829 Merritt. De-troit. Mich.

TEST EQUIPMENT

YOUR OLD TEST EQUIPMENT is worth money. Write now telling us what you have and we will send our cash offer. We can supply any Rider Manual circuit for 25c per page. Reo Radio Co., 178 Greenwich St., New York.

WIND ELECTRIC PLANTS

BUILD WIND LIGHT PLANT. Complete plans and valuable catalog 10c. Welders. Electric Fencers. LeJay Manufacturing. 417 LeJay Building. Minneapolis. Minnesots.

FOR SALE (NON COMMERCIAL) ¢wôRD

Under this heading we accept advertisements only when goods are offered for sale without profit. Remittance of 3c per word should accompany all orders. Copy should reach us not later than the 10th of the month for the second following month's issue.

SELL — 433 VARIETIES U. 8. postage stamps mounted professionally in album. Do not confuse with cheap foreign collections. 335 cash. 425 power Wollensak microscope—\$8.50. Cost \$20.

FOR SALE, GQDD GENE-MOTOR, wrije William Pitzgerald. 72 Franklin Blvd., Pontiac. Mich.

35 WATT XMITTER WITH POWER supply, tubes. cols \$20. W9QZV, Wentworth. Wis.

SELL — 433 VARIETIES U. S. postase stamps mounted professionally in album Dn not confuse with chean.

SEX LETTIES U. S. WYOZV, Wentworth. Wis.

SELL — 433 VARIETIES U. S. WYOZV, Wentworth. Wis.

SELL — 433 VARIETIES U. S. WYOZV, W

SKY BUDDY \$14.00, RSR CLipper \$9.00, S9 Super-Skyrider \$29.00.
W9ARA, Butler, Missouri.

METAL LOCATOR, RADIO IN-strument, very sensitive, locates buried metals. Like new in original packing case, price \$40. Russell Free. Box 3, Hot Springs, New Mexico.

USED TELEPLEX CODE Machine, early model with carrying case, strong spring motor crank handle, scode tapes, good condition, for sale or offered? Will send photos. Joseph Zuk, 513 W. Susquehanna Ave., Philadelphia, Penna.

ARTER MEXCHANGE

NO ADVERTISEMENT TO EXCEED 35 WORDS, INCLUDING NAME AND ADDRESS

Space in this department is not sold. It is intended solely for the benefit of our readers, who wish to buy or exchange radios, parts, phonographs, cameras, bicycles, paperting goods, books, magazines, etc.

As we receive no money for these announcements, we cannot accept responsibility for any statements made by the readers.

Use these columns freely, Only one advertisement can be

Copy should reach us not later than the 10th of the month for the second following month's issue.

BEST OFFER IN USED U. S. commemoratives or migratory duck stamps gets my I.C.S. Radio Operators' Handbook. Ward E. Williams. 1414 10th Ave. Lake Charles, La. MAYER AMPERITE MIKE. TYPE-writer, projector, radioptican, field glasses, electric shaver, electric trains and equipment. Many others, Let's swap lists. M. Epstein, 2953 Buckle. Indisamplis, Ind.

TRADE 5 INCH MAGNETIC speaker, micrometer vernier 23 plate variable condenser e90055 mfd. Imperators of the subject, and torch, small artistic bakelite cabinet. Want bonnes, telescope, or inders of e9055 mfd. Imperators of the subject, and torch, small artistic bakelite cabinet. Want bonnes, telescope, or binders for "R&T" magazine. Alexander Podstepny, 217 Pine St., Prilla, Penna.

10 METER PHONE TRANSMITTER Also condition 20 waits, 5 tubes for swap complete. I want good short ware reasoner. Hardman, 513.8—5th.

10 METER PHONE TRANSMITTER ALSO condition 20 waits, 5 tubes for swap complete. I want good short ware reasoner. Hardman, 513.8—5th.

10 METER PHONE TRANSMITTER ALSO condition 20 waits, 5 tubes for swap complete. I want good short ware reasoner. Hardman, 513.8—5th.

10 METER PHONE TRANSMITTER ALSO made and condition 20 waits, 5 tubes for swap complete. I want good short ware reasoner. Hardman, 513.8—5th.

10 METER PHONE TRANSMITTER ALSO made and condition 20 waits, 5 tubes for swap complete. I want good short ware reasoner. Hardman, 513.8—5th.

10 METER PHONE TRANSMITTER ALSO made and motor. Write to Jack Miller. 41 Widman States and motor. Write to Jack Miller. 41 Widman States and motor. Write to Jack Miller. 41 Widman States and motor. Write to Jack Miller. 41 Widman States and motor. Write to Jack Miller. 41 Widman States Receiver from equipment and meteral receiver fro

10 METER PHONE TRANSMIT-ter Al condition 20 watts. 5 tubes for swap complete. 1 want good short ware repeirer, Hartman, 5713—5th Ave. Brooklyn, N. Y.

TRADE: COMPLETE "CHARLES Atlas" dynamic tension health course, set ten sex books like new, for N.K.I. course or similar radio course. Also take Ghirardi's Radio Physics Course. Earl Olson, 206—5th Are., S.W., Waterland, S. Dak.

HAVE: SILVER KEY WOUND watch, perfect running shape, Bruno guitar, banjo-uke. Want code machine such as Teleplex, Instructograph. CW x'mitter, S.W. set or what have you? Stanley J. Kubik. Pine St., Gt. Barrington, Mass.

HAVE LATEST MODEL AC SW-3 with 2 sets of coils, power pack, etc., xmitter with coil, xtal power Pack, etc., a Readrite ansiyzer. Want Sty Champion, Write John Womack, Dimmitt,

698

HAVE GOOD FIVE METER transceiver enclosed in portable leather-ette case including batteries and tube. Will trade for what have you. All mail answered. William R. Flizserald, 72 Franklin Blyd. Pontiac, Mich.

GROSS CP-CB-CW/55 160 M. X.B and AT coils. new 20-key concertina. 20 plece American Fiyer electric train set, 67 consecutive Weekly Philatelic Gossips. What have you? Byron Britt, Alliance, Nebraska.

TRADE—2A FOLDING CAMERA, Electrical Eng. course cost \$80.00, 4 tube BCA Victor BC radio. Want good 8.W. fartory made radio such as Hailicrafter, etc. Also have other Parts. W. Fuller, 709 Fenton. Lansing, Mich.

HAVE MUSICAL INSTRUMENTS, cameras and watches to trade for a Doerle or other short wave receiver A.C. G. H. Gerhold, 113—18 Atlantic Ave., Richmond Hill. L. I., N. Y.

course in radio, watchmaking course, DX-4 receiver—drop a card to Miner, Oakdale, Iowa.

TRADE NO. 10 CHEMURAFT chemistry set in very good condition and 2-456 ke. Hammarlund sir-tuned i.f.'s. Want Sum projector, phono motors power transformers, 8mm Kodak titler. W2FZE, 152 Fifth St., Elsabeth. N. 172 EDITIONS "HISTORY OF OUR Country," original price 2:c each, good condition, average amount of pages in each 30-35, size 7'x 104". Will swap for what have you? Margaret Schielcher, 930 Hamilton Bird., Peoria, III.

HAVE A THREE TUBE all-wave receiver. Would like to trade for ham equipment. Also have Mailory "B" eliminator and good carter Genemotor. Make trade offer. Milton Bender, Saugus, 2017.

pusse trace oner, Diliton Bender, Sauyou Callf.

VOLUMES I AND 2 RIDERS
Serrice Manuals, also Radio Telegraphy and Telephony by Dancan and
Drew, value \$20, for camera, guns,
akis, electric motors, what have you?
T. Booth, Mt. Shasta, Calif.
WANT RABIO PARTS, 8MM
mories, art photos, marasines, Have
meter A.C., transeciver, microphone,
telescope, miniature camera, commenrative stamps, W. M. McDonald, 271
Pearl St., Cambridge, Mass.

(Continued on opposite base)

(Continued on opposite page)

Electronic Television Course

(Continued from page 656)

to the third electrode where each electron dislodges five or more electrons from the third electrode. This process may be carried through as many as twelve to four-teen successive stages. Thus, it can be seen that from a single electron emitted from the surface of the first electrode, when carried through twelve successive stages, we have a tremendous amount of electrons on the final collecting electrode. By the use of this principle an amplification of many million times may be obtained in a single tube. We shall see how this phenomenon is taken advantage of in the transmission of television images in subsequent chapters of this course.

Curing Television's Ills

(Continued from page 655)

and Y somewhat greater than Y1. It is difficult to secure accuracy much greater than this, except in the laboratory.

Figs. 12D and 12E show the effect of applying oscillating voltage either to the c-r tube or to the grid of a video tube. Frequencies of 400 to 1000 cycles per second are satisfactory for the vertical test and 150,000 to 200,000 cycles for the horizontal.

Adjustments should be made in the sweep controls of the set to assure even spacing between bars. The test pattern is of great value in determining the linearity of the scanner when no test transmissions are on the air.

"Cairo Conference" Changes

"Cairo Conference" Changes

A NUMBER of new regulations adopted at the Cairo Conference last year have already gone into effect in the United States.

The ARRL will ignore—at least for the time being—one of the major changes; that of punctuation symbols. These were originated in the telegraph conference, held at the same time, and were consented to by the radio conference.

The old QSA code, however, has been abandoned for indicating signal strength and readability, combined. The new QSA code refers to strength only, being:—QSA 1—Barely perceptible; QSA 2—Weak; QSA 3—Fairly good; QSA 4—Good; QSA 5—Very good.

Readability is indicated by a QRK code. in which:—QRK 1—Unreadable; QRK 2—Readable occasionally; QRK 3—Readable with difficulty; QRK 4—Readable; QRK 5—Perfectly readable.

The familiar abbreviation TNX or TKU for thanks or thank you has been replaced by the still shorter TU—a great time-saver if you're habitually grateful.

Two new classifications of emissions are now in use. Type AO emission is basic uninterrupted carrier; A1, c.w. telegraphy; A2, modulated telegraphy; A3, telephony; A4, facsimile; A5, television.

Answers to QUIZ on page 650

1. a, b, and c. d is spark transmission. 2. c

3. b 4. b

5. a, b, and c.

6. b 7. a, b, c, d, e, and f.

8. a, b, and c. 9. d

10. a, b, c, d, and f.
11. aC, bF, cB, dE, eA, fD.
12. He didn't send them—he received them; they were sent by an assistant.

13. b 14. b

15. Mainly c, but also b, to a lesser extent.

16. d 17. b

18, b-or if an AC set, c.

RADIO & TELEVISION

World S-W Stations

(Continued from page 668)

BERLIN, GERMANY, 49.34 m., Addr., Broadcasting House, 4.50-II pm.

LIMA, PERU, 49.35 m. Radio Na-tional 7 pm.-1.30 am. Except

Mc.

6.079 DJM

6.077 OAX47

Call

		Sun.
6.075	VP3MR	GEORGETOWN, BRI. GUIANA, 49.35 m. Sun. 7.45-10.15 am.; Daily 4.45-8.45 pm.
6.070	CFRX	TORONTO, CAN., 49.42 m. Relays CFRB 7.30 am12 m., Sun.
6.070	VE9C\$	VANCOUVER, B, C., CAN., 49.42 m. Sun, I.45-9 pm., 10.30 pm., I am.; Tues. 6-7.30 pm., 11.30
6.069	_	pm1.30 am. Daily 6-7.30 pm. TANANARIVE, MADAGASCAR, 49.42 m., Addr. (See 9.53 mc.) 12.30-12.45, 3.30-4.30, 10-11 am., Sun 2.30-4.30 am.
4.065	SBO	Sun 2.30-4.30 am. MOTALA, SWEDEN, 49.46 m. Re lays Stockholm 4.15-5 pm.
6.060	_	TANANARIVE, MADAGASCAR, 49.5 m., 12,30-12,45, 3,30-4,30 10-
6.060	W8XAL	CINCINNATI, OHIO, 49.5 m., Addr. Crosley Radio Corp. Relays WLW Tues., Fri., Sun. 5.45 am12 n., 11 pm2 am., Wed. 5.45 am12 n., 9 pm2 am., Mon., Thurs., Set. 5.45 am2 am.
6.060	UAXEW	Mon., Thurs., Set. 5.45 am2 am., PHILADELPHIA, PA., 49.5 m. Re- lays WCAU Tues., Fri., Sun. I pmMid. Wed. I-10 pm.
6.057	ZHJ	PENANG, FED. MALAY STATES, 49.51 m. 6.40-8.40 am., except
6.054	HJ6ABA	12 n., 6.30-10 pm.
6.050	GSA	DAVENTRY, ENGLAND, 49.59 m., 10.45 am.12 n., 12.20-4, 4.15-6 pm.
6.050	HJIABG	BARRANQUILLA, COL., 49.65 m., Addr. Emisora Atlantico, 11 am -
6.050	HP5F	II pm.; Sun. II am8 pm, COLON, PAN., 49.59 m., Addr. Carlton Hotel. Irregular.
6.045	RV15	KHABAROVSK, U.S.S.R., 49 63 m I
6.045	XETW	Z-II am. TAMPICO, MEXICO, 49.6 m. Ir-
6.040	W4XB	TAMPICO, MEXICO, 49.6 m. Irregular 7-11 pm. MIAMI BEACH, FLA., 49.65 m. 1-3 pm., 9 pm12 m. Relays
6.040	WIXAL	WIOD. 8OSTON, MASS., 49.65 m., Addr. University Club, Irregular.
6.033	HP5B	PANAMA CITY, PAN., 49.75 m., Addr. P. O. Box 910, 10.30 am.
6.030	VE9CA	2, 6-10 pm. CALGARY, ALTA, CAN., 49.75 m. Thur. 9 am1 am.; Sun. 12 n
6.030	RV59	MOSCOW HEER 4075 54
6.030	OLR2B	10-11 pm. Irregular. PRAGUE, CZECHOSLOVAKIA, 49.75 m. (See 11.875 mc.) Off the air at present
6.023	XEUW	VERA CRUZ, MEX., 49.82 m., Addr. Av., Independencia 98. 10 pm.
6.020	DJC	BERLIN, GERMANY, 49.83 m., Addr. (See 6.079 mc.) 1-4.30 pm.
6.017	HI3U	SANTIAGO DE LOS CABALLEROS D. R., 49.85 m. 7.30.9 am., 12 n 2 pm., 5-7 pm., 8-9.30 pm.; Sun. 12.30-2, 5-6 pm.
6.015	PRA8	PERNAMBUCO, BRAZIL, 49.84 m., Radio Club of Pernambuco 4.9
010.6	OLR2A	PRAGUE, CZECHOSLOVAKIA. 49.92 m., Addr. (See OLR, 11.84 mc.) Wed., Thurs., 4.40-5.10 pm.
010.6	coco	mc.) Wed., Thurs., 4.40-5.10 pm. HAVANA, CUBA, 49.92 m., Addr. P. O. Box 98. Daily 7.55 am 12 m., Sun. until 11 pm.
010.8	VK9M1	between Australia and New Zea- land). Sun., Wed. Thurs. A 55-
6.019	CICX	7.30 am. SYDNEY, NOVA SCOTIA, 49.92 m, Relays CJCB 7 am1 pm., 4-8 pm. 1.30 pm. 8.30 pm.
6.007	ZRH	ROBERTS HEIGHTS, S. AFRICA, 49.94 m., Addr. (See ZRK, 9.606 mc.) Daily exc. Sun. 10 am., 3.30 pm.; Sun. 9 am., 12 n., 12.15. 3.15 pm. Daily exc. Sat. 11.45 pm12.50 am.
6.007 2	ZRJ	JOHANNESBURG, S. AFRICA. 49.94 m., Addr. S. African Broad- cast, Co., 3.30-4 pm. exc. Sun.
	(Contin	reast, Co., 3.30-4 pm. exc. Sun.

BARTER and EXCHANGE FREE ADS (continued)

WHAL SWAP A.R.R.L. LICENSE manual, eighth edition. Holman self instruction gultar chord book. Hohe man practical violin book, "The Principles Underlying Radio Communication" book by U. S. Army Signal Corps, Bill Schroeder, 803 Wisconsin, Peoria, III.

SWAP 5-TUBE SHORT WAVE

Peoria, III.
SWAIP 5-TUBE SHORT WAVE
tadio, good condition, and Eastman
jiffy Kodak for Argus enlarger, 35min
developing tank, other developing
equipment. All letters answered, Edward Wooten, 14 Maiden Lanc, Raleigh,
X.C.

developing tank, other developing equipment. All letters answered. Edward Wooten, 14 Maiden Lane, Raleigh, N. C.

FOR TRADE. QUITE A LOT OF radio harts and other thinks. Will trade for curios of any kind, or horns of any kind. D. R. SMEDLY, Star R. BOY N. Rushille, Illinois.

WANTED A SW RCVR IN GOOD condition, Trade for it a good 35mm still projector and/or Boys' Life complete Jan. 32-Dec. 33 w. D. Archer, 8202—29th Are., N. E. Seattle, Wash. WANT ED A SMALL OCTAGON (VN-certina, English or Boston female bull-dog. rifles, Indian pottery, relies, coins, vases, statuary. Hare Rultar, mandolin, banjo-tike, ukulele, banjo-taxideruny courses, steel-engravings, list. Stanley Pytel, 5023 Orden Ave., Cleero, Illinois.

WILL PAY DIPFERENCE BEtween my Ultra-Skyrider, model SX10, and Hammarlund Super-Pro, or National HRO, Nothing older than 1936 model wanted, My receiver is in A-1 condition. J. H. Hood, 37 Club Drive, Greenville, S. C.

HAVE OV'R TWO YEARS ISSUES Short Wave & Television. Will awap for equal value in SWL cards or? Also have part of N.R.1, course, Swap for? Warren Dame, Old Connecticut Path. Cochituate, Mass.

WANTED: ALL BACK ISSUES OF Short Wave Craft between June, 1930, and May, 1932 Will pay cash or trade. State price and power for? Worren date Ave., Needhant Helchus, Mass.

HAVE 2 TUBE SHOILT WAVE REscended Ave., Needhant Helchus, Mass.

HAVE STROMERRO CARLSON masnetic blekup outilt, all electric, was a season of the core of the control of the control of the core of the control of the core of the core of the core of the control of the core of

you fellers? WTGPP, The Dalles, Orreson,
HAVE STROMBERG CARLSON magnetic blekup outfit, all electric, complete speaker, GE motor arms, etc. Want code machine or transmitter, or what have you? James Rush, 14 Madison Ave., Pleasantville, N. Y.

HAVE AUTOMATIC (ODE MAChine with tapes, code course, Also meters, microphones, ham parts, plexing, All Star receiver, etc. Swap for Sprayherry's late Radio Course, fast camera, testing equipment or? S. J. Nicewicz, 79 Church St., Broad Brook, Com.

camera, testins equipment or? S. J.
Nicowicz, 79 Church St., Broad Brook,
Conn.

WANTED: LATE CANDLER "II"
nior" code course or instructograph.
Have N. W. Taxidermy course, G. E.
electric clock, also .22 repeating rifle
in good working condition. Donald
Willis, 212 Madison Street. Plattetille, Wiaconsin.

HAVE OLD U.S. COINS, C.S.A.
bills, scarce Fla. notes, many Southern
bills, old books, magazines, butterfies.
Wanted a good car radio, early U.S.
covers, stamps for a reply, L. Signor,
Dover, Fla.

3 TiBE GROSS HAM RECTIVER,
electrical band spread, six roils, 20-550
maters, "B" plate power supply, also
filament supply transformer, Want bug
key, Candler course, typewriter or?
Gerald Collins, Pinecrest Sanatorium,
Powers, Mich.

TRADE RADIO PARTS, B ELIMInator, detective nusazzines,
hooks,
tools, bookmatch covers, stamps, skull,
cash, for short ware set, radio courses,
antique glassware, paper weights or
what have you's Russell, Box 314. Hawley, Minnessta.

HAVE TRUMPET, COST \$58.50.

HAVE TRUMPET, COST \$18.50 in very good condition. Will trade for test equipment or anything in radio. Don Morse, 2532 E. Main St., Freeport, Illinois.

HAVE MODEL AF UNIVEX CAM-era like new. Will swap for receiver or amplifier parts. All letters will be answered. Address all letters to Rich-ard Judkins, 7432 Chappel Ave., Chi-cago, Ill. cago, Ill,

HAVE KW HIGH POWER PLATE transformer, over 2,000 volt et, at 600 1000 MA. Will swap for 20 meter xtals, xtal mike typewriter, meters other xmitter parts or what have your W9QZV. Wentworth, Wis.

WANTED: TYPEVERTER, BINOCulars, books by atshiry, Zane
Grey, Raiston Press, Harvard Classics,
Offer mimeographins, courses in art
(Federal Schools), salesmanship, mental power, journalism, health, bodybuilding, R. T. Biggin, 116 Church
Rd., Rockledge, Pa.

TRADE HALLICRAFTERS SX 17 receiver complete with speaker. Purchased December 2nd, 1938. Still covered by factory guarantee and in first class condition. What have you to mfor? Marvin W. Shellhanter, P. O. Box 104. Tamaqua, Penna.

TRADE — QST 1929-1934 COMplete 60 copies, also Fall 1938 Radio Amateur Call Book Wunt used or mint V. S. stamps. What have you yie C. Besancon, WiGLF, 406 West Ash St., San Diego, Calif.

SWAP COLLECTION OF 410 NOP.

Vie C. Resancon, W60LI, 406 West Ash St., San Diego, Callf.

SWAP COLLECTION OF 410 FORcign stamps in album, 85 different
kinds, 75 tubes, volume controls, radio
books and radio parts for what have
you'r R. W. Dieter, R2, Box 109, Blue
River, Wis.

SWAIP: EMERSON 110V. D.C.
motor, 1/6 h.p. 1750 rev., Benjamin
air rifle, Essex 4 tube broadcast radio,
Will trade for radio parts, coulpinent
or what have you? Wallace Braley,
Kellogg, 10wa.

Kellogg. Iowa.

SWAP 330 BIFF. U.S. IN NICE album for a D.C. 0-1 milliammeter. Also have radio parts. magazines. K. E. McLain, R.R.3. Arcanum. Ohio. HAVE BOOKS. M.MGZINES, stamp and coin publications, pennants. old radio parts, stamp abums and printing to trade for stamps and coins, or Idmm projector. Andrew Hanes. 35 Krakow St. Garfield. N. J. HAVE 'B' ELIMINATORS, "A' eliminator, radio parts. "Flying Aces." "Short Wave Craft" '32-'26, model airplane kits (15), ship kit. Want. At' '58'-37' with power supply, gultar, or? Clarence Schwenkel. 123 N. Bedford. Madison. Wis.

WANTED. A GOOD 16MM MO. tion Dicture camera and films for rube Doorle retr. cmplete. Best offer takes it. Charles West. 1818. TRADE 7 TUBE T.R.F. SW RECEIVED. The Control of the

luk. 2648 N. Menard Avenue, Chicago, Illinois.

WILL EXCHANGE 50 FOREIGN stamps for 15 U.S. comment. Oklahoma tax token for each comment. Newspaper for 10 comment. Pive postmarks for each comment. Ortille Arnold, Box 311. Henryetta. Oktahoma.

SWAP—\$13 AUTO HOT WATER heater, for two 2 mfd 3000 v filter cond.'s or dual tank cond. 5000 v insulation, or what have you? Frank Smith, WaJZM, 1267 Logan Ave., Tyrone. Pa.

HAVE GOOD VIOLIN AND BOW and Mossberk—six shot 22 with telescope. Want S.W. receiver, transmitter with power, typewriter or what have you? Will pay eash for above mentioned. K. Scott. Box 209, Hendersonville, N. C.

BEST OFFER TAKES STAMP Collection, radio parts and tubes, taxidermy course. Have Crosley "Jewel-lox" 8-tube electric radio with speaker and tubes. All letters answered. A. Komperda, 1808 S. Seeley A., Chicago. III.

WILL THADE PRINTING FINA anything radio or photographic; magazines, etc. 100% answers. Steve Salata, 137 18th St., Wheeling, W. Va.

WANTED: RECORD CHANGER

WANTED: RECORD CHANGER, power pack, meters and other things. I have DeForest complete radio course, mike trans. (new), phono records, 5 meter transmitter, short wave set, and S.B. mike. Everything answered, Bill Godden, Erametsburg, Iewa.

HAVE UHEMISTRY EQUIPMENT
(Glassware, etc.), Chemeraft set number 7½, and United States stamp collection in album. Want 22 single shot
rifle, other rifles. State make, model,
condition, etc. Glen Elliott, 513 Wenonah. Oak Park, Illinois.

WANTED: ELECTRIC TRIAINS,
any inake—regarding conditions accepted. Describe locomotive number,
etc. Beservice locomotive number,
freed: Elsemann 6-T, bat, radio, crysrial sets, piann rollers, earphones, John
L. Evans, 1016 Easthigh, Oskaloosa,
lowa.

tal sets, plano rollers, earphones, John I.. Evans, 1016 Easthigh, Oskaloosa, Iowa.

HAVE 2-VOLT TUBES: 1—10, 2—33's, 2—34's, 12—30's, 1—32, 2—33's, 2—34's, 18 ythems and Tung sols, Value \$6,00.

Used 1 or 2 hrs. Want good microphone or multi-mer, or what have you, Oran Robertson, WeQCZ, Box 643, 10-10 lower of the california.

SWAP 16' MAG. SPEAKER, FOR-ciku stamps, postmarks, Baby Brownie camera, sharp tumer dial, Auto safety lighter, 2-tube short wave set with amplifier and speaker, bando-uke. Send offer, R. Lewis, Griffithville, Ark.

HAVE 2-TUBE RAPIO, 80 AND 200-500 m. colis, no power supply. Cook electrical course, 16 mm. movie projector, erector set, 1922-1923 Pop. Mechanics. Want 51-512 stide rule, Dourias Phelpar Sidney, New York.

TRADE OVER 100 RADIO MAGS.

manuals, colis, piones, Want Candler Jr., code course, Ultra Sky Rover, AC-DC. List free, John Moskal, 3' Gardner Ave., South Attleboro, Mass. HAVE FEDERAL PHOTO ENlarger, never used; Mossberg, 22 caliber rifle in good condition and stamps. Want short wave revr., radio parts or what have you. All letters answered. Harold Tucker, QRS 342, West Point, N. Y.

SWAIF WESTINGHOUSE DYNA-motor output 1000 v. 400 ma. invoir output

or what have you. All letters answered. Harold Tucker, QRS 342. West Point, N. Y.

SWAI' WESTINGHOUSE DYNA:
motor output 1000 v. 400 ma. input 12
t Mounting bracket. Want Auto "B"
supply with 90 v. tap. J. Zubas, Irvington, N. Y.

I HAYE FOR SWAP 2 GRAFLEX
cameras. 2 view cameras. 5x7 and
34x5½: also 3A Estiman Wooks
Want a good 12 gauge hammerless
shotsun or? Fred R. Wolcott, 273 Medford Road. Syracuse. N. Y.

SWAP 32V MOTOR GENERAtor, meters, a book "Hadio Operating
Questions and Answers," by Nilson and
Hornung, issues of Q.S.T., S.W.&T.,
and Popular Science Mag., and stamps.
What have you? W91AW, Toru Smyth,
Beloit. Kansas.

EXCHANGE TWO WESTEIN
electric 250 watt tubes, Kolster power
amplifier, Thordarson transformers, 250
watt Clarostat, etc. Want signal generator and tube tester. C. D. Larimore,
191ate, Nabr.

SWAP STROMBERG - CARLSON
short wave converter i tubes, Convert
any radio A.C. in short wave, 3 hands,
Want to R. Garela, 300 W. 17th Sc.
New York.

WANTED: CANIDLER JUNION

WANTED: CANIDLER JUNION

Write to B. Garcia. 300 W. 17th St. New York.

WANTED: CANDILER JUNION Code course; small all wave receiver. Have 800 books. fletion and non-fletion from which edual value can be selected. Also complete file of "Life." Howard W. Sieger, 110 Nobles Laine. Pittsburgh. 10. Pa.

1 HAVE AN 8-1N. UTAH DY-namic speaker, Want Call Book or? Ovide Lee. 220 Adains St., Alpena, Milch.

1 HAVE AN STAN GIAM DATA TRANSFERS PROBERS WANT CAIL BOOK OF Ovide Lee. 220 Adams St., Alpena, Mich.

HAVE CARTOONING COURSE, motor efficiency guide, scout handbook, B-eliminator, several pairs of magnetic phones, and American Boy and Popular Science Magazines. What have you got? H. C. Patchen, 23 Grand St., Sidney, N. Y.

HAVE 500 GREANE GI'N WASH-ers (leather), 125 radiator and gastank cap washers (leather) and gastank cap washers (leather). Trade for radio, photographic, musical equipment. If you greate cars you need these. Value \$28,25, Harry L. Tucker, 1828 G. St., N.W. Washington, D. C. WANTED.

WANTED. KY BUJDLY OF WASHINGTON, WASHINGTON, WASHINGTON, C. WANTED.

St., El Piso, Texas.

GOLD AND SILVER U. S. COINS, stamps, covers, postcards, radios, books, etc., for your offers, hobby goods. (oreign paper money, auto radiator, name plates, skis, films, Drinthuk supplies, Rudojsh Zak, 2569 Last 89th. Cleveland. Ohio.

WANTED: TO BUY—COMPLETE 20 meter phone transmitter with about 200 watts input, Pay cash. Charles Rosen, 6271 Clemens, St. Louis, Mo. HAVE B FLAT LOW PITCH clarinet in good conmunication receiver such as Howard or Hallferafter, Levis, Mo. HAVE B FLAT LOW PITCH clarinet in good confident or exchange for good communication receiver such as Howard or Hallferafter, Levis Carter, Box 452, Clanton, Al.

WANTED: "URL PLAT LOW PITCH clarinet in good confident or exchange for good communication receiver such as Howard or Hallferafter, Levis, Mo. HAVE B FLAT LOW PITCH clarinet in good confident or exchange for good communication receiver such as Howard or Hallferafter, Levis Mo. HAVE B FLAT LOW PITCH clarinet in good confident or exchange for good communication receiver such as Howard or Hallferafter, Levis Mo. HAVE B FLAT LOW PITCH clarinet in good condition to exchange for good communication receiver such as Howard or Hallferafter, Levis Mo. Pitch levis Man Nat. Pitch Washer, 344 West Main St., Pitch Man Pitch Man

BARTER and EXCHANGE FREE ADS (continued)

FRADE: (UMPACT TRANSMITter; uses plug-in coils, xtal stage—
59 final stage 242-A. Chassis 7° by
13°. Less power supply. Wari microscope or what have you? W97AJE. 2901
N. Kilbourn Ave. Chicago. Illinois.

HAVE ATWATER KENT 60
minus cabinet. 3 tube A.C.-S.W., 3
tube Kadette. loads other stuff. Want
Sky Buddy or similar R.X. Prefer
some one near Chicago. Robert Perlich,
3635 So. Wood St., Chicago. Ill.

WILL TRADE UTAH JUNIOR
X-mitter (new): Triplett 1200-A
V-0-M tester (new): Melisaner beat
frequency seedlistor (new). Welsaner beat
frequency seedlistor (new). Welsaner
with tapes. Write for offer. G. H.
Burkhart. Box 292. Woodsfield, Ohio.
WANTED: Old) HAM" CALL
Book and map of U.S.A. Will pay
their postage for sending it. My
QRA is Luther Schalke, 1608 Campbeil Ave.. Des Plaines. Ill.

HAVE A NATIONAL 4 TUBE
Thrill Box SW-4 to swap for a 30-30
or 32 special. (Battery Bet). Will
answer all leiters. Thor Holm.
Cooperstown. N. Dakota.

WILL SWAP 1/6 HORSEPOWER
motor, itg aww, 6 tube Monarch radio.
long and sbort wave, fair shape, for
tube tester and A.C.-D.C. voit-ohmmilliammeter. Ward Smith, 7428 Idiwild St., Pittshura, Penna.

WANTED — FIVE METER REceiver and sending set, also small
spark coil. Will swap white and colored mice. also breeding cages and
mouse circus. J. Burns. R.I. Langborne. Ps.

TRADE FIRST FLIGHT, Iller'
day, dedication corers over 3 yra., for
unused U.S. commen. blocks. Foreirn
stapps for U.S. War medals for what?
Richard H. Munro. 384 Palisade Ave.,
Union City. N. J.

WANT: SUPER CLIPPER OR
Doerle D38, Will site? 2 tube A.C.D.C. receiver, double button American
mike, Knight A.C. transceiver. S'
speaker, plug-in coils, plus case
Herbert Makelasia. 139 116th Are., E.
Hibbins Minnesota.

HAVE THREE TUBE ALL-WAVE
receiver also 250 wat crystal controlled.

Herbert Makela 1129 16th Ave., E. Hibbing. Minnesota.

HAVE THREE TUBE ALL-WAVE receiver: also 25 watt crystal controlled transmitter. Would like to trade for transmitting equipment. E. E. Bateman. R.I. Box 56. Saugus. Calif.

HAVE RADIO PARTS. SHORT wave converter, stamps, books, want set of Hammarlund S.W. K.-4, 17 and 270 meter plug-in colis or? Bud Carson, 1618 W. Second St.. Dayton, Ohlo.

son, 1618 W. Second Bt. Daylon, Unio.

HAVE 5 TUBE A.C. SHOET WAVE
receiver, dynamic speakers, power
transformers. Western Electric cradie
phone, Baldwin headphones, radio
marszines. Want binoculars, photoeraphic equipment or midget receiver.

M. Simon, Box 441. Gary, Indiana,

M. Simon. Box 441. Gary. Indiana.

TRADE A W.E. 625-A MIKE. A
60 meter crystal. and a National
Union type 210 tube, all for a good
mounted Billey or similar crystal for
about 7275 kcs. Write: W2KRF.
Mount Vernon. N.Y.

EXCHANGE 5 TUBE SILVERtone set, without panel or top, very
good shape. Will swap for typewriter or what have you! Will be glad
to answer any requests. Russell B.
Gurney, Jr., Salem Depot. N. H.

WILL TRADE 1 41 PLATE CARDwell transmitting condenser for an
electric phono pick-up. elther crystal
or magnetic or f Please write. Harold
Brace, Jr., Bridge Ave. Berwyn. Pa.

WANTED — PORTABLE TYPE-

WANTED — PORTABLE TYPE-writer and short wave receiver. Any-one having either of these please write. Have 15 jewel Swiss wristwatch in fine condition and some cash to trade. All correspondence answered. R. H. Miner. Oakdale. 1988.

WILL SWAP GUITAR IN Al shape for small transmitter, receiver radio parts and books, All offers answered 100%. Will exchange SWI cards with anyone, anywhere. QSL 100%. Lucien Guitard, Sturgeon Falls, Ont.. Canada.

HAVE TRANSCEIVER USING 635G and 12A7 and American microphone model SJ single button, also have radio physics book by Ghirardi. have power su by tapped 250V, 6V, 4V, 1½V, What have you? John Krawizyk, 1457 So, 9th St., Camdan, N. J.

SWAP MEN'S JEWELED SWISS wristwatch, perfect condition. ¼ H.P. G.E. motor; model 53A Springfield 22 rifle for what have you? Joseph N. Mosleh, 4002 6th Avenue, Brooklyn. N. Y.

N. Y.
WILL SWAP TUBES. RADIO
parts, power supply, Sly Buddy radio
and Agfa clipper camera for short
wave converter, small transmitter or
what? Send for list. Paul Kent, 1116
E. High St., Rockville: Indians.

E. HIRD St., ROCKVIIIc. Indians.
TRADE RTI CORRESPONDENCE
course, Kato converter 110 DC to 110
AC 10 Vs., converter 8-250 DC
portable typewriter, receiver parts,
diagrams for winding 110 voit 700 wait
generator. Want transmitter or Parts.
R. H. Hilgers, Plainville, Kansas.

TRADE—TUNGAR BULBS, USED.

2 and 6 amps sizes. Also 1 Sheidon type G rectifier. For air rife or used tubes. S. Andrewski. I1 Horatio St., Newark. N. J.

WILL TRADE CAMERA. AGFA liex, with anastigmat F.7.5 lens shutter-speed to 1/100 second, with case. Cost \$12.50. Want volt-ohmmeter or tube-tester or what have you. Eugene Wright, P.O. Box 1794. Vernon, Texas.

WANT TO HIV OLD MOTOR.

WANT TO BUY OLD MOTOR cycle, for about \$15. Have radio parts and receiver to trade. Edward Peckham. 2021 Ninnesota, Wichita

RADIO PHYSICS COURSE AND Radio Operating Questions and Answers to swap for high voltage plate transformer and filter parts. Also hundred used receiving tubes to swap for ham stuff. WSGUY, Rio Hondo. Texas.

HAVE 6°, 8" AND 10" FARADAY 6 volt gongs like new; Seth Thomas time switches; relars; overload switches for low DC; Hawkins Electric Guides; want Univex movie equip; 8 mm flin or? Wendell, Pretty Frairie, Kansas.

for low DC; Hawkins Electric Guides; want Univex movie equip.; 8 mm film or? Wendell, Pretty Prairie, Kansas.

TRADE METERS, RADIO PARTS, or cash for any drummer's supplies you have. Want complete set of drums and cymbals. Will buy single pieces as well as sets. Militon Lippin. 214 E. 54th St., Brooklyn, N. Y.

USED HAWAHIAN GUITAR AND case, cost \$25,00, complete and free leasons. Cost \$29,00, complete and free leasons. Cost \$29,00 when new. Want model gas engine and plane kit or what? Walter Dunn, 1822 Roys Ave. Elkhart. Ind.

HAVE 2 TENNIS RACQUETS, 12-in. Peerless dynamic. Eaquire and Pop. Meeh, magazines; Hollywood night club match covers. Want Rider Manuals, tube tester or record changer. John Littijohann, 1736 Gundry, Long Beach. Calif.

I HAVE J. E. SMITH RADIO course, microscopes and many other articles. What have you? Am interested in everything. R. Mummert. 310 W. Dougtas. Freeport. Illinois.

WANTED:—RIDER'S MANUALS.

1 to 7, analyzer, aignal generator. condenser tester. oacillograph and other test equip. W. D. Brooks. Penn Ave. East Liverpool. Ohlo.

WANTED:—PARTS FOR 100 W. transmitter. Have electric cilpshave razor. 5 tube D.C. Aiwater Kent. B-eliminator, radio parts. \$145.00 re-frigeration course. refrigerator tools. 16 mm camers and projectors. Nesbit A. Boyles. Hartford City, Ind.

TRADE AUTOMOBILE, AND MO-toocycle license plates with collectors.

Boyles. Hartford City. Ind.

TRADE AUTOMOBILE, AND MOtorcycle license plates with collectors
in other states and countries. Will buy
if chesp. Swap shortware set and big
Western hat for old car, or? Anthony
Shuplenus. Newport, N. J.

WANTED: A "BUG" KEY In
good condition. Hsve radio parts to
trade or will buy if the price is right.
Also interested in transmitting parts.
Snick's Ham Shack. Box 244. Perry.
Iowa.

Balter & Ham Stack. Box 244. Ferry.

HAYE GAS WASH. MACH. MOtor, meters, 6L/s. T20 and other parts.
Wanted used Natl. SW3 or? and ham
sear, What have you? Henry Macaro,
China Road, Winslow, Maine.

TRADE BEAUTIFULLY HAND
woren knitting bags, hand hooked rugs,
other items or cash for interesting old
bottles, flasks, barber bottles, old
colored prints, lithographs, engravings,
Gary Thompson, Lakeview Terrace,
Asheville, North Carolins, U.S.A.

HAVE 6 TUBE BATTERY RADIO,
shortwave kit, 3 tube, violin, ridding
belt, rabbits, radio parts, books on
radio, courses, Want any radios, 1 to
3 tubes, battery powered, and suites
plas, Hillary A. Munk, North Somers,
Connecticut.

DIES. Hillary A. Munk. North Somers, Connecticut.

HAVE UNDERWOOD TYPE-writer, Elgin bicrele motor, 3 eye microscope 550 power. Want Contax, Letca, candid, tenor asxophone Buscher, King preferred, or what have you? J. Scionti, Jr., 9920 37th Ave., Corona, N. Y.

will swap COMBINATION TAT-tooling machine, tattoo outfits, complete tattooling course, etc., for small short ware radios, headphones. Instructo-graph, radio parts, code oscillator. E. E. Dye, 321 East State St., Kenner, Square Pa.

Sonare Pa.

ASSORTED STAMPS, FOREIGN
and U.S. Value \$25.00. Want headphones automatic key transmitter
parts. What have you? Mike Monaghan,
218 S. 2nd St. West Branch Mich.
SWUP I'NITTD STATES STAMP
collection, many mint commemoratives
mint blocks, etc. Want balloon tire
bicycle in good condition and Argus
candid camera in good condition. L.
Bernstein, 1071 Elder Ave., Bronx.
N.Y.

N.Y.

NEW THORDARSON OSCILLOscone W.E. power transformer.
Stewart-Warner concerter, electric
turntable and pickup. A.C. 12" Jensen
speaker, other items. Want test
meters, Riders Manuals or cameras.
Edgar D. Growden, 818 Gephart Drive.
Cumberland, Md.

FOR TRADE REMINGTON standard typewriter, electric razor, battery radio, new set (10) fiction books (8 by Jack London) in exchange for what? E. G. Bartlett, Atlanta. Mo.

HAVE 1916 MODEL T FORD roadster, very good condition, run less than 6000 miles. Want phone xmitter or what have your William J. Moore. Stanley, N. Y.

SWL EXCHANGE
WOULD LIKE TO SWAP SWL, fotos, post card views, and correspondence with amyone. All letters answered 100%, QRAC-Edward Lendonse, U.S.A.

SEND ME YOU'R QSL'S, SWL'S, your city or country and shack photos under cover from any foreign country via Air Mail. My return letter to you same way. M. Grzeask. 4853 Sc. Loniasko. Ill. U.S.A.

WOULD LIKE TO EXCHANGE

WOULD LIKE TO EXCHANGE

my QSL Chicasko. Ill. U.S.A.

WOULD LIKE TO EXCHANGE

my QSL Chicasko. Ill. U.S.A.

WOULD LIKE TO EXCHANGE.

WOULD LIKE TO EXCHANGE.

Walton, 1314 Park Ave. Inglewood, Cailf.

HELLO SWL'S OF ASIA. AUS-

Calif.
HELLO SWL'S OF ASIA, AUStralia, Central and South America,
Canada, Africa, W6 and W7 district,
Atlantic & Pacific Islands, Exchange
cards, I SWL promptly 100%. Derek
Gray, Culvers Close, Winchester,
Hampshire, England.

ATTENTION SWL'S, WILL SWAP cards and keep correspondence with you. Jag an Swensk. Eric Hultgren. 77 Sessiew Terrace. Bridgeport, Conn., U.S.A.

Conn., U.S.A.

ATTENTION PUREIGN HAMS and SWL's. Let's awap cards. I will send mine at once on receipt of yours. What say OM? Lew Moltoni. 519—21 St., Union City, New Jersey.

What say OM? Lew Molteni, 519—21 St., Union City, New Jersey, U.S.A.
ATTENTION YL'S ES OM'S.
Wud like to exchange SWL's with anyone interested and correspond with any SWL. preferably SWL members, I QSL 100%, 73's, 88's.
Harry E. Meier, T Boosevelt Arc., Cranford, N. J.
WOULL LIKE TO EXCHANGE SWL crds with sil foreign listeners, Also from Nevada, Idaho, North Dak., New Mex. Wyoming, Delaware and Arkansas, I QSL 100%, QRA, John La Sallin, 40 East 66th St., New York, N. Y.

N. Y.

SWL'S—SHORT WAVE LISTENers all over the world. I QSL 100%.
Swap photos of American autos for
foreign makes. QRA—G. E. Kilpatrick.
W10—SWL—W3. Conshohocken. Pa.,
U.S.A.

World S-W Stations

(Continued from preceding page)

Mc. 6.005 HPSK COLON, PAN., 49.96 m., Addr. Box 33, La Voz de la Victor. 7-9 am., 10.30 am.-1 pm., 5-11 pm.

em., 10.30 am.-1 pm., 5-11 pm.
MONTREAL, CAN., 49.96 m., Can.
Marconi Co. Relays CFCF 6.45
am.-12 m.; Sun. 8 am.-10.15 pm.
DRUMMONDVILLE, QUE., CAN.,
49.96 m., Addr. Canadian Marconi Co. 6.005 CFCX

6,005 VE9DN

6,002 CXA2 MONTEVIDEO, URUGUAY, 49.98 m. Addr. Rio Negro 1631. Relays LS2, Radio Prieto, Buenos Aires. 7.30-10.30 pm. 6.000 ZEA

SALISBURY, RHODESIA, S. AFRICA, 50 m. (See 6.147 mc., ZEB.) Also Sun. 3.30-5 am. 6,000 XEBT

MEXICO CITY, MEX., 50 m., Addr. P. O. Box 79.44. B am.-1

End of Broadcast Band

LISBON, PORTUGAL, 50.15 m., Addr. Rua Capelo 5. 3.30-6 pm. HUANCAYO, PERU, 50.16 m. La Voz del Centro del Peru. 8 pm. 5.977 C52WD

5.975 OAX4P

CARACAS, VEN., 50.26 m., Addr. Radio Caracas. Sun. 7 am.-10 pm. Daily 7-8 am., 1-1.45 pm., 4-9.30 or 10 pm. 5.970 YV5RC

VATICAN CITY, 50.27 m. Off the air at present. 5.948 HVJ

PORT-AU-PRINCE, HAITI, 50.37 m., Addr. P. O. Box A103, 7-9.45 pm. 5.950 HH2S

MARACAIBO, VEN., 50.52 m., Addr. Radio Popular, Jose A. Higuera M, P. O. Box 247. Daily 11.43 am.-1.43 pm., 5.13-10.13 pm.; Sun. 9.13 am.-3.13 pm. 5.935 YVIRL

5.920 YV4RH VALENCIA, VEN., 50.68 m. 5-9.30 5.900 ZN8

MAFEKING, BRI. BECHUANA-LAND S. AFRICA, 50.84 m. Addr. The Govt. Engineer, P. O. Box 106. 6-7 am. 1-2.30 pm. Ex. Suns.

SAN JOSE, COSTA RICA, 50.85 m. 6 900 TILS 6-10 pm.

BARQUISIMETO, VEN., 50.86 m.,
Addr. La Voz de Lera, 12 n.-1
pm., 6-10 pm. 5.878 YY3RA

SANTIAGO, D. R., 50.95 m. Irreg-ular 6-11 pm. 5.005 H192

TEGUCIGALPA, HONDURAS, 51.06 m. 1.15-2.16, 8.30-10 pm.; Sun. 3.30-5.30, 8.30-7.30 pm. 5.875 HRN

SAN PEDRO DE MACORIS, D. R., 51.25 m., Addr. Box 204, 12 n.-2 pm., 6.30-9 pm. S.OCK HILL

MARACAIBO, VEN., 51.3 m., Addr. Apartado 214. 8.45-9.45 am., 11.15 am.-12.15 pm., 4.45-9.45 pm.; Sun. 11.45 am.-12.45 5.845 YVIRB

SAN JOSE, COSTA RICA, 51.5 m., Addr. Alma Tica, Apartado 800, 11 am.-1 pm., 6-10 pm. Relays TIX 9-10 pm. 5.035 TIOPH

SAN JOSE, COSTA RICA, 51.59 m., Addr. Senor Gonzalo Pinto, H. 5.013 TIOPH2

GUATEMALA CITY, GUAT., 51.75 m. Casa Preidencial, Senor J. M. Caballeroz. Irregular. 5.790 TGS

MANAGUA, NICARAGUA, 52.11 m. 8-9.30 pm, 5.758 YNOP

SAN CRISTOBAL, VENEZUELA, 52.23 m., Addr. La Vox de Tachira. 11.30 am.-12 n., 5.30-9 pm., Sun. fill 10 pm. 5.740 YY2RA

QUITO, ECUADOR, 52.28 m. ir-regular 10 pm.-12 m. 5.735 HCIPM

PRAGUE, CZECHOSLOVAKIA, 58.31 m., Addr. (See OLR, 11.84 mc.) Fri, 4.45-5.10 pm.; Sat, 5.15-5.40 pm. 5.145 OKIMPT

BANDOENG, JAVA, 58.31 m. 5.30-5.145 PMY 11 am.

DELHI, INDIA, 60.06 m., Addr. All India Radio. 7.30 am.-12.30 pm. MADRAS, INDIA. 60.61 m. Addr. All India Radio. 7 am.-12 n. 4.995 VUD2 4.950 YUM2

BOMBAY, INDIA, 61.16 m. Addr. All India Radio, 7 am.-12.30 pm. 4,905 VU 82

BOGOTA, COL., 61.19 m., Addr. Apartado 565. 12 n.-2 pm., 6-11 pm.; Sun. 12 n.-2 pm., 4-11 pm. 4.900 HJ3ABH

(Continued on page 703)

The Radio Beginner

(Continued from page 660)

area around the transmitter, as shown in Figure 4. Since the ground wave rapidly diminishes in strength, it can be seen that on short waves there will be an area in which no signals from the particular transmitter will be observed. This phenomenon is known as skip distance and accounts for the long range communication on short waves. Skip distance seems to increase as the waves become shorter, the limit of skip being the diameter of the earth. Under certain ionospheric conditions and wavelengths, the sky wave may even miss the

Natural Wavelength of an Antenna

If we were to erect an antenna in open space, we would have a device for responding to a radio wave. The wavelength of the receiving antenna would depend upon the length of antenna wire. The natural wavelength of the antenna would be its wavelength without the addition of any other equipment. If, for example, the antenna had a natural wavelength of 100 meters, it would be practically insensitive to all other wavelengths, except harmonics of the I00 meter wave. We could, of course, change the natural wavelength by making the antenna longer or shorter, but fortunately we have a much better method. If we were to insert a coil as shown in Figure 5, we would actually be adding wire to the length of the antenna. We could then vary the antenna by adding or subtracting turns from the coil, and in this way tune in to different wavelengths. The present method of tuning is to connect a variable con-denser across the coil, as shown in Figure 5.

The radio wave manifests itself in the antenna as a very minute current of electricity. The insertion of the coil between the antenna and the ground will compel the current to flow through the coil, since the ground is at a lower potential than the antenna. We recall that an alternating current flowing through a coil will create a rising and collapsing magnetic field. In a previous lesson we learned that such a magnetic field could be transferred through space to another coil, creating a flow of electric current in that coil. We then have all the conditions necessary for taking the current in the antenna and putting it into our radio receiver.

Coupling Antenna to Receiver

There are a number of methods of connecting receivers to antennas, the simplest being direct coupling, illustrated in Figure 6A. In direct coupling the electrical energy is fed directly to the receiver. Figure 6B shows another form of coupling known as electrostatic coupling, in which the electrical energy of the antenna is transferred to the receiver by the charging and the discharging of the condensers. In inductive coupling, Figure 6C, we use two independent coils, one in the antenna circuit, and the other in the closed circuit of the receiver. In this case, the energy is transferred from the antenna circuit to the receiver by means of electro-magnetic induction. In actual practice both coils are wound on the same form, the antenna coil being known as the primary and the re-ceiver coil being termed the secondary. Maximum transfer of energy is secured when both coils are tuned to the same frequency, or are in resonance.

For Latest TELEVISION News-Read "R. & T." every month.

BARTER and EXCHANGE FREE ADS (continued)

SWL'S IN U.S.A., FOREIGN countries, I will send one of my new SWL cards to those who send me one of theirs, I QSL 100%, QRA is Jinmy Wrath, 1147 White St., Des

Jinimy Wrath, 1147 White St., Des Plalnes, III.

HAMS, SWL'S ANYWHERE, Would appreciate your card for my collection—will send out exchange SWL card same day, QSL 100%, S. H. Giffin, 18 York Court, Guilford, Baltimore, Md.

ATTENTION SWL'S, 1 WILL answer all SWL cards received from anyone everywhere. QRA — Gerahl Swanberg, 16 Seaver St., Brockton, Mass.

How the VODER Creates Human Speech!

(Continued from page 651)

some of the keys the operator can control its quality so as to make those sounds. Other keys make the "stop consonants" like d, k, and p.

Another kind of sound enters into human speech, most importantly in the vowels, like a, e and o. It comes from the vocal cords, and is very complex and somewhat musical. In the Voder, therefore, there is an electrical source of sound corresponding to the vocal cords; and there is a pedal for changing its pitch and for giving to speech a rising or falling inflection as desired. When the operator wants the sounds made by the vocal cords, instead of whispered sounds or consonants, an arm rest switch is depressed. Then the particular parts of this vocalized sound which are wanted are selected by playing the proper keys.

The source for this sound is the so-called "relaxation oscillator" which gives a sawtoothed wave (like that used in television sweep oscillators) in contrast to the smoothly rounded wave of a pure musical note. This saw-toothed wave has a fundamental note which gives the whole sound a definite pitch. Broad changes in this pitch mark the difference between male and female voices; gliding change of pitch over a smaller range constitutes inflection. The Voder may be posed as a man or a woman by turning a knob; it may state a fact, ask a question or emphasize a word, according to the motion of its pedal,

When one talks one shapes his mouth cavity so that some particular parts of the complex sound come through clearly, while other parts are suppressed and unheard. This makes the difference between the vowel sounds. For the same purpose the Voder is provided with ten keys. Each of these operates a variable attenuator to control the current in a definite frequency range. Source of current for each attenuator is an electrical filter which picks from the saw-tooth wave one particular group of its overtones. Normally each attenuator is an open-circuit, so that no sound comes through. The vowel sounds require the selection of only one, two, three or four ranges of overtones; the other ranges contribute nothing to the sound. In human speech, some sound is found in every range, but the Voder seems to speak most understandably when the unimportant overtones are suppressed.

The sounds are generated by oscillators rich in harmonics. The harmonic and tonic combinations required for the various vowel and consonant sounds, ten for the "soft" sounds and three for the "click" sounds, are obtained by selection of the frequency components of the oscillator outputs by means of filter networks. The pitch of the "voice" is varied by a control operated by the operator's wrist. This is a frequency control of the tones from the oscillators (female and male voices).

Combinations of sounds are obtained by touching various keys, thus feeding the desired sounds (tonic and harmonic frequencies) selected by the filter networks in the input of the common amplifier, Sudden breaks (clicks and sharp sounds) such as found in t, k, p, etc., are controlled by three black keys on the control board.

The "secret" of the operation is in the filter networks which take harmonic combinations from the "multivibrator" and high-frequency (hiss) oscillators, to produce the sounds which make up the words.

The operator must be carefully trained in the selection of key combinations to make intelligent "sounds."

Considering all the keys, there are twenty-three different sounds available to the Voder operator, By combination of keys she can mix these sounds and by the fingering she can control the shading. All speech sounds can be produced, but the number any operator can make use of depends on her finger dexterity; even granted the ability, only long practice will bring skill. The young ladies who will operate the Voder at San Francisco and New York were selected from more than three himdred telephone operators; and through long practice they have acquired a sufficient vocabulary to converse on ordinary subiects.

Sounds in the Voder's repertoire are not confined to those of the human voice. Bleating of sheep, lowing of cattle, grunting of pigs, and even the rat-a-tat of the woodpecker can be produced with perfect realism.

Singing will undoubtedly be an early accomplishment of the Voder; this would require a few more keys and pitch controls, with a little more intricate operating technique.

New Dynamic Microphone

The company has also issued a catalog describ-g a number of microphone models, stands and ing a number accessories.

FREE-FIFTEEN 104 PUBLICATIONS

featuring construction of the most popular short-wave receivers and transmitters

with a One-Year's Subscription to Radio & Television

THESE publications are large printed sheets which average in size about 11°x17°, the majority of them printed on both sides. All have photographic reproductions of the complete project, as well as detail illustrations. In addition, there are complete wring diagrams and various technical details to assist the experimenter and builder in constructing the set.
Full parts lists are always given, and the printed text runs anywhere from 500 to 3,000 words, depending on the complexity of the radio receiver.
ALL RECEIVERS AND TRANSMITTERS ARE STRICTLY UP-TO-DATE; THERE ARE NO ANTIQUES OR OUT-OF-DATE PUBLICATIONS IN THIS

LIST. These projects are particularly valuable to the experimenter and constructor who builds "his own". Indeed, the 50 publications shown on this page represent the cream of recent radio construction by the master radio builders of America. Designs of this kind usually are sold for 25c to \$1.00 appece, and frequently you do not get half the technical information we give you. When mailing us your subscription, use the special coupon on this page. Select your 15 projects by their serial numbers. We accept money orders, cash. checks or new U.S. stamps (no foreign stamps or currency accepted). If you send cash or stamps register your letter against possible loss.

SINGLY, WOULD HAVE THESE 15 PROJECTS, IF BOUGHT YOU \$1.50. YOU CAN NOW GET THEM ABSOLUTELY FREE!

HOW TO MAKE A 2-TUBE RECEIVER FOR THE BEGINNER. This receiver consists of detector and swo endor estages. A double purpose tube is used to secure the 2 audio stages. Tubes are for 1½ volt battery operation. No. 2

HOW TO MAKE THE PORTABLE SUPERHET 4. An acc all-wave superhet for battery operation. This receiver features band-spread and has a built-in beat cociliator. No. 3.

HDW TO BUILD A 4-BAND 3-TUBE SUPERHET. A 3-tube receiver giving 4-tube results. Rack and Danel type construction is employed. It has a regenerative second detector. No. 4

HOW TO MAKE A FIXED-BAND 8-TUBE SUPERHET.
This short-wave 'fan' receiver tunes over a wide band
of frequencies without coil switching or changing. It's
a real performer. It operates directly from 110 V. A.C.
and has band-spread. No. 5

s real performer. It operates directly from 110 V. A.C. and has band-spread.

HOW TO BUILD A 5-TUBE SUPERHET FOR FAN AND HAM, A sure-fire receiver for all short-wave enthusiasts. It uses plug-in coils and iron core i.F. transformers which assure plenty of gain. No. 6 HOW TO MAKE A TWIN-PENTODE RECEIVER. This receiver, especially designed for the beginner, employs but one dual purpose tube which gives results equivalent to a 2-tube receiver. It is for 2-volt battery operation with headphones. No. 7 HOW TO BUILD AN EFFECTIVE SHORT WAVE PRESELECTOR. A signal-booster that will greatly improve reception on any short-wave super. It employs two 6K? tubes in parallel in a highly efficient circuit in which both input and output are tuned. No. 8 MOW TO BUILD A REGENERATIVE 2-TUBER. This unusual receiver has the tickler coil in the screen grid circuit of the detector. The receiver tunes from 9-210 meters; band-spread is included; metal or glass tubes may be employed. No. 8 HOW TO MAKE THE S.W.AT. COMMUNICATIONS RECEIVER. An unusually fine receiver for the critical Ham and Fap, incorporating many exceptional features. Regeneration is employed in the first detector stage which make use of an acorn tube. The receiver also incorporates a noise-control circuit, variable selectivity control and a tuming meter. No. 10 HOW TO MAKE A BAND-SWITCHING 2-VOLT RECEIVER. This fine receiver for battery operation bem

HOW TO MAKE A BAND-SWITCHING 2-VOLT RE-CEIVER. This fine receiver for battery operation em-ploys a band-switching arrangement, enabling the build-er to tune from 16-550 meters by flipping a switch. No. 11 er to tune from 16-550 meters by flipping a switch: No. 11

MOW TO, BUILT THE MULTI-BAND 2 RECEIVER.

A receiver for the short-wave beginner. It has a remarkable tuning range of 2½-270 meters with bandspread on all bands. Plug-in colls are used and complete data for an A.C. Dower supply is given. No. 12

HOW TO MAKE THE VS-5 METAL TUBE SUPER-HET. This complete all-wave receiver boasts, among other things, variable selectivity, metal tubes. AVC and band-spread. The tuning range is from 17-550 meters.

HOW TO BUILD A BEGINNERS 2-TUBE SUPER. A simplified superbet using 2 roll battery tubes which is just the thing for the beginner. It employs plus-in coils which corer a tuning range from 15, 200 meters. No. 14

meters

HOW TO MAKE A T.R.F.-3 FAN RECEIVER. This is an all-around receiver employing 2 volt tubes. A T.R.F. stage ahead of the regenerative detector insures root selectivity and sensitivity. Band-spread is provided by a two-speed dish. No. 15

MOW TO BUILD THE FORTY-NINER—A RECEIVER FOR LEAN PURSES. This novel receiver features a space-charge detector and requires only 12 voits of B battery. It uses 2-49 tubes which may be operated from any 2 voit A battery. No. 16

HOW TO MAKE A REAL 5-METER SUPERHET. This carefully designed receiver for ultra-short wave received the memory of the short wave received the short wa

HOW TO BUILD A MIGH-GAIN METAL-TUBE RE-CEIVER. This little receiver is a real performer, tuning from 10-200 meters. Continuous band-spread is pro-vided. No. 20

wided.

HOW TO BUILD THE WORLD-WIDE 10-METER CONVERTER. Many enthusiastic reports have been received from the builders of this unit, which may attached to your present receiver for picking up 10 meter signals from all parts of the world. Only 2-tubes are used.

No. 21

NO. 21

HOW TO BUILD A DE LUXE 3-TUBER. This is the receiver for the Ham or Fan who wants a really high class receiver of simple design. It employs an unusual band-spreading dial. The circuit, employing metal tubes, has a stage of T.R.F. followed by a regenerative detector and a stage of audio.

No. 22

NOW TO MAKE THE 3-IN-I REFLEX SET. A 2-tuber siving 4-tube performance is this receiver which does its work with a minimum of tubes. A 6F7 is used as a combined R.F. amplifier, detector and first audio stage; a 6C5 is used as second audio stage. No. 24

a 6U5 is used as second audio stage. No. 24
HOW TO BUILD THE 100 WATT QRM DODGER—
A COMPACT 5-METER TRANSMITTER. This M.O.P.A.
rig puts out a hefty signal and by use of a calibrated
vernier oscillator control will overcome the QRM problem
on 5 meters. No. 25

HOW TO BUILD A DE LUXE 5-METER MOBILE STATION. A really fine MO.P.A. mobile transmitter which will work real DX on portable location. It employs five metal tubes. No. 26

NO. 20

HOW TO BUILD A 125-WATT MODULATOR USING 35T's. This is an ideal unit for the amateur and will modulate any transmitter with a power input up to about 400 watts. A total of 10 tubes are used including the power supply unit.

No. 29

HOW TO BUILD THE C-O-M 150 WATT TRANS-MITTER. An unusual crystal oscillator, multiplier with but one tuned circuit. It uses a pair of RK37's in parallel with a RK39 driver. The crystal oscillator circuit uses a 6L6.

A LONG-LINES TRANSMITTER FOR I.METER
TRANSMISSION, AND A COMPANION RECEIVER.
A really special job for the seriously minded experimenter. This outfit permits short distance contacts this interesting hand.
No. 31

HOW TO BUILD A 200 WATT XMITTER WITH PEN-TET EXCITER. This transmitter will really so to town. The use of the Pen-Tet crystal oscillator and frequency multiplier circuit eliminates many headness from cracked crystals. No. 32 HOW TO BUILD A 10 AND 20 METER TRANSMITTER. A 200 watt transmitter which worked worldwide DX on test. Although compact, it is highly efficient in the 10 and 20 meter bands. Five tubes are used. No. 33

efficient in the 10 and 20 meter bands. Five tubes are used.

No. 33

HOW TO MAKE THE WIZARD I.TUBE 50-WATT TRANSMITTER. An amateur, crystal-controlled c.w. transmitter using the RK20 screen grid pentode. In testa, it compares with 250-watters. No. 34

HOW TO MAKE THE "OSCILLODYNE" I TUBE WONDER SET. One of the most sensitive short-wave ests designed, employing a really new circuit for the first time. Battery operated. No. 35

HOW TO MAKE THE "19" TWINPLEX (DNE TUBE PERFORMS AS TWO) RECEIVER. One of the most sensitive 1-tube sets ever designed and very Dopular. No. 36

HOW TO MAKE THE IMPROVED 3-TUBE OOERLE SET FOR BATTERY OPERATION. One of the finest of the Doerle series, by the famous short-wave inventor. No. 37

HOW TO MAKE THE "GO-GET-EM 2" RECEIVER FOR BATTERY OPERATION. One of the finest of the Doerle series. Bettery operated. Excellent for beginners.

beginners.

No. 38

HOW TO MAKE THE I-TUBE ALL-ELECTRIC OSCILLOBYNE. This is the famous electrified short-wave receiver. Easy to build for little money. Operates on A.C.

No. 38

HOW TO MAKE THE 2 TO 5 METER TWO-TUBE
COUDSPEAKER SET. This receiver may be used with batteries or with an A.C. Dower pack. Packs a big wallop.

NOW TO MAKE THE 3-TUBE BATTERY SHORT-WAVE RECEIVER. This receiver was a prize winner in SHORT WAVE CRAFT. An unusual short-wave receiver. easy to build.

NO. 41

THE BRIEF-CASE SHORT-WAVE RECEIVER AND

easy to build. No. 41

THE BRIEF-CASE SHORT-WAVE RECEIVER AND HOW TO BUILD IT. So small that the entire set, batteries, head set, aerial and everythins, goes into a brief-case. Stations from Europe are often received. By Hugo Gernsback and Clifford E. Denton. No. 42

Gernsback and Clifford E. Denton. NO. 42
HOW TO BUILD THE POCKET SHORT-WAVE RECEIVER. One of the smallest, pocket-size, battery receivers ever designed by Hugo Gernsback and Clifford
E. Denton. A marvelous set that brings in European
stations. E. Denton. A marvelous set that brines in European stations.

No. 43
HOW TO BUILD THE CIGAR-BOX I-TUBE "CATCH
ALL" RECEIVER. An effective short-wave battery set
which fits into a small cisar box. insuring high portability
yet great efficiency.

No. 44
HOW TO BUILD THE "DUAL-WAVE" SHDRT-WAVE
BATTERY RECEIVER. With this set, you can hear both
ends of radiophone talk, on one set of phones. In
other words, you can listen to a ship at sea and the
land station communicating with it, simultaneously, by
means of this double receiver.

No. 45
HOW TO BUILD THE I-TUBE "33" TWINPLEX RECEIVER. The twinplex, aithough it has only one tube
works as if it had two. Marvelous in efficiency. Uses
either batteries or A.C. power pack for "B" supply

either batteries or A.C. power Dack for "B" supply Ne. 46

HOW TO BUILD THE PORTABLE MINIDYNE SHORT-WAVE BATTERY SET. Uses no aerial, no ground. The total weight is 3% lbs. and measures 5256 inches; Self-contained batteries, tube, condensers, and loop. Highly sensitive circuit.

HOW TO BUILD THE HAM-BAND "PEE-WEE" 2.

TUBER. A dandy receiver with high efficiency and band-spread tuning. Works a loudspeaker, yet the entire receiver is no larger than your hand. Works with either batteries or an A.C. power pack. No. 48

HOW TO BUILD THE DUO-AMPLIDYNE. The ideal 1-tube set for the beginner. One of the finest 1-tube sets; it really gives 2-tube performance. Made for battery operation. With only ten-foot antenna brings in the good European stations. No. 49

HOW TO BUILD THE "MONO-COIL 2". No more "plug in" coils. This set eliminates bothersome coils and is made to cover short-wave bands. Works with either batteries or A.C. power pack. No. 50

RADIO & TELEVISION 99 HUDSON STREET NEW YORK, N. Y.

RADIO & TELEVISION, 99 Hudson Street, New York, N. Y. Gentiemen: Enclosed you will find my remittance of \$2.50 for which enter my subscription to RADIO AND TELEVISION for One feat (1.5) issues). Send me promptly, absolutely FREE and promptly. Selection of the publications I have circled at the First Open December 1, 150 publications I have circled at the First Open December 1, 150 publications of the Subscription of Extend Present Subscription City State . R&T-3-39 Send remittance by check or money order. Refister letter if you send cash or unused U. S. Postage Stamps.

World S-W Stations

(Continued from page 700)

	,	minimize from page 100)
Mc.	Call	
4,880	YUC2	CALCUTTA, INDIA, 61.48 m. Addr. All India Radio. 6.36 am12.06 pm.
4.880	HJ4ABP	MEDELLIN, COL., 61.44 m. 8-11
4.876	ZRD	DURBAN, SOUTH AFRICA, 61.5 m., Addr. (See ZRK, 9.606 mc.) Daily 12 m3.45 pm., Sat. till 4 pm., Sun. till 3.20 pm.
4.842	HJ3A8D	BOGOTA, COL., 61,95 m., Addr. La Nueva Granada, Box 509, 12 n 2 pm., 7-11 pm., Sun, 5-9 pm.
4.800	HJIABE	CARTAGENA, COL., 62.46 m., La Yoz de los Laboratorios Fuentas. Addr. Box 31. Daily 8.30 am11 pm., Sun. 10 am9 pm.
4.780	HJIABB	BARRANQUILLA, COL., 62.72 m. La Vox de Barrenquille, Addr. P. O. Box 715. 11.30 am. 1 pm., 4.30-10 pm.
4.772	HJIAN	SANTA MARTA, COL., 62.86 m. 11.30 em2 pm., 5.30-10.30 pm. except Wed
4.740	HJ&ABC	IBAGUE, COL., 48.25 m. 7 pm,-12

BOOK REVIEW

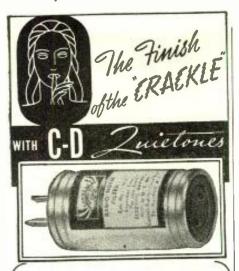
THE EVOLUTION OF PHYSICS, Albert Einstein & Leopold Infeld, Size 7%" x. 81/4", 319 pages, illustrated. Published by Simon & Schuster, New York City.

trated. Published by Simon & Schuster, New York City.

This is a book which traces the evolution of ideas in physics from the earliest mechanistic concepts to relativity and the quanta theories. It is written in simple language for the layman, being a collaboration between the world-famed physicist and one of his co-workers in research. It tells, in layman's language, the story of mankind's attempt to reason out its relationship to the world at large. The authors have likewise avoided all highly technical language and mathematical formulae. They bring out their points clearly by using comparisons with known facts of everyday experience, explaining the significance of all major contributions to science since the work of Newton. The book is divided into four major sections, each of which contains numerous chapters. The sections are: The Rise of the Mechanical View; The Decline of the Mechanical View; Field, Relativity; and Quanta. There are numerous diagrams which greatly aid the reader in comprehending the explanations, and a detailed index makes it easy to look up any items which are of particular interest.

S. W. League

(Continued from page 667) Freq. mc. R S Observer 28.245 4 9 Fitzpatrick


Call

Call	Freq. mc.	- 3		Observer
G6BW	28.245	4		Fitzpatrick
G6BY	28.120	5	7	Fitzpatrick
G6WY	28.170	5	6	Taglauer
G8SA	28.140	- 5	9	Taglauer, Noyes
G8SH	28.375	4	9	Fitzpatrick
G8GM	28.315	4	6	Fitzpatrick
G8KX	14.110	Ś	ğ	Fitzpatrick
G8BO	28.300	4 5 3	ź	Halliday
G8MA	28.265	4	5	Noyes
G8MX	28.410	- 7	8	Noyes
Ğ8ÜB	14.	5	4	Akhtar
Ğ8NY	14.06	4	5	Akhtar
GM6WD	14.220	4	8	
GM6SR	14.025	7		Fitzpatrick
GM6RG	28,450	5	8.9	Lendzioszek
GMUNG	20.430	3	9.7	Clarke, Halliday,
				Jordan, Noyes,
				Hegler, Taglauer,
				Henderson, Fitz-
GM8WN	14,175			patrick
GM8MN	14.173	4	8 7 7 5 9 7	Fitzpatrick
GI2CC	14.170	5	- /	Clarke
GISUW		2	- /	Wood
GW5KJ	14.08	3	5	Kemp
EI9I	28.220	5 3 5 5	9	Taglauer, Fitzpatrick
PAOEO	28.250	5	7	Clarke, Noyes
PAOMZ	28.285	4	8	Fitzpatrick
	14.100	4	6	Fitzpatrick, Akhtar
LAIG	14.145	4	6	Fitzpatrick
ON4ZK	28.230	5	8	Taglauer, Fitzpatrick
ON4PA	28.160	5	9	Taglauer, Fitzpatrick
ON4DI	14.085	4	8	ritzpatrick
ON4VM	14.210	5	8	Fitzpatrick
ON4VK	28.440	5	9	Noyes
ON4ZA	28.385	4	6	Noyes
ON4DZ	14.10	5	6	Akhtar
HA8N	14.14	5	7	Akhtar
F300	14.090	5	7	Clarke
F3AL	14.040	5	6	Clarke
F8LX	14.000	5	6	Clarke
F8RV	14.080	5	7	Clarke
F8RR	28,145	5	ġ	Fitzpatrick, Noyes
F8MX	28.135	5545545555555554	7 9 7 7	Fitzpatrick
F8NX	14.100	5	7	Clarke
F8NR	14.09	4	6	Kemp
I1KN	14.395	3	7	Lendzioszek
LXIAI	14.00	4	ź	Lendzioszek
	17.00	*		LEHUZIUSZCK I

FREE CATALOGS and INFORMATION

By carefully reading the advertising columns, you will find many offers to furnish literature containing valuable technical information that will help you in your work. Use this list freely.

Firm	Business	Offer	No.	Cos	Ado. Page
ABC Radio Laboratories	Set Mfr.	Information		Free	691
Allied Engineering Inst.	Kit Mfr.	Circulars	1	Free	.
Allied Radio Corp.	Mail Order	1939 Catalog		Free	
		Radio Builders Handboo	, k	10c	. 413
American Radio Institute	Radio School	Booklet	<u> </u>	Free	
Amperite Co.	Parts Mfr.	Chart	l _{AR}	Free	
		Illustrated Bulletins	A	Free	
Bliley Electric Co.	Parts Mfr.	Engineering Bulletin	E-6	100	1
		Circular	A-6	Free	
Brush Development Co.	Parts Mfr.	Catalog	1 7-0	Free	
Bud Radio, Inc.	Parts Mfr.	Catalog	RT39		
	1	Station Log & Data Bk		100	
Burstein-Applebee Co.	Mail Order	Catalog	١.	Free	
Cameradio Co.	Mail Order	1939 Catalog		Free	
Candler System Co.	Code Course	Book of Facts	ĺ	1 '	
Cannon, C. F., Co.	Parts Mfr.	Folder	T-3	Free	
Consolidated Wire & Asso-	Parts Mfr.	Information	1-5	Free	
ciated Corp's.	1 4414 14411.	Intermation		Free	693
Cornell-Dubilier Elec. Corp.	Parts Mfr.	Literature		-	
Coyne Electrical School	Trade School	Electrical Catalog		Free	1
Jule Enderstein Delitor	Trade School		1	Free	
Dodge's Institute	Radio School	Radio Catalog Catalog		Free	1
Gold Shield Products	Mail Order			Free	1
Hammarlund Mfg. Co.	Set & Parts Mfr.	Catalog 1939 Catalog	1	Free	1
	oct de l'alts iville.	16 page Booklet		Free	677
Harrison Radio Co.	Mail Order	Information	1	Free	
Henry, Bob	Mail Order	List		Free	695
Howard Radio Company	Set Mfr.	Technical Information	1	Free	679
Instructograph Company	Code Machine	Information		Free	I.F.C.
International Corres. Schools		Booklet		Free	688
Korrol Radio Products Co.	Parts Mfr.	Catalog		Free	704
Martin Research & Mfg. Corp.		Catalog	1	Free	687
Mass. Radio School	Radio School	52-page Catalog	1	Free	684
McIntosh Elec. Corp.	S. W. Diathermy	Information	l	Free	689
National Company, Inc.	Set & Parts Mfr.	Catalog		Free	692
National Radio Institute	Radio School	64-page Book	l	1	I.B.C.
National Schools	Radio School	Radio & Television Bklt.		Free	641
New York YMCA Schools	Trade School	Booklet		Free	688 689
Par-Metal Products Corp.	Parts Mfr.	Catalog		Free	691
Radio & Technical Publ. Co.	Radio Textbooks	Circulars on each Book		Free	689
Radio Corp. of America	Radio	Literature		Free	B. C.
Radio Train. Assn. of Amer.	Radio School	Book		Free	689
RCA Institutes, Inc.	Radio School	Catalog		Free	689
RCA Mfg. Co., Inc.	Set & Parts Mfr.	Literature		Free	681
Remington Rand, Inc.	Typewriter Mfr.	Catalog		Free	685
Solar Mfg. Corp.	Parts Mfr.	General Parts Catalog	9S	Free	677
		Transmitting Catalog	2X	Free	0//
		Condenser Testers Cat.	CBCC-I		
Sprayberry Acad. of Radio	Radio School	52-page Book	CDCCI	Free	682
Supreme Publications	Publisher	Information		Free	683
Teleplex Co.	Code Machine	Catalog	S-3	Free	689
Triplett Electrical Inst.Co.	Parts Mfr.	Catalog	ر-ب	Free	675
Turner Co., The	Parts Mfr.	Microphone Bulletin	40-D	Free	684
Universal Microph. Co., Ltd.	Parts Mfr.	Information	W-D	Free	704
Van Nostrand, D., Co.	Book Publisher	Catalog		Free	
Ward, Montgomery, & Co.	Mail Order	1939 Radio Catalog		Free	673
Wholesale Radio Service Co.	Mail Order	1939 Radio Catalog	73	Free	691
X. L. Radio Laboratories	Parts Mfr.	Information	"	Free	684
				. 100	VOT
					- 1

YES —man made crackles are no more when you use the new C-D Quietone Radio Interference Filters.

This new C-D development, engineered to effect the elimination of man made interference, is just what the Doctor ordered for the radio amateur, experimenter and radio set owner.

Ask your local C-D jobber to show you Quietones. They have behind them the integrity of the 29 year old C-D name—the excellence which characterizes all Cornell-Dubilier products.

Available in attractive colors to match room interiors. Remember—there's a Quietone designed to meet every application. Send for free detailed literature today.

UNIVERSAL

Heavy Duty Single Button Microphone
Superlative performance. Low cost Rugged, dependable. For voice pickup, p.a., amateurs, etc. Standard impedance, 200 ohms. Output level -50 db.

UNIVERSAL MICROPHONE CO., LTD. 424 Warren Lane, inglewood, Calif.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Box 2879-F, Scranton, Penna.

Explain fully about your course in the subject marked X:

| Radio | Sound Technicians |
| Experimental Television | Aviation Section of Radio Operating

Age

Address

(Continued from preceding page)

Aussies have fallen off badly since our last reports, and most of those heard last month were reported by Masud Akhtar, Observer for India.

reported o	<i>y 20243444 21</i>		,	0 00041 741 141	
Call	Freq. mc.	R	S	Observe	r
VK2ACL	14.14	5	5	Akhtar Lang Wells Wood Akhtar Akhtar Akhtar Akhtar L. Fuller L. Fuller	
VK2GM	14.115	5	6	Lang	
VK2UC	14.1	5	7	Wells	
VK2ADT	14.	4	7	Wood	
VK3SG	14.	5	5	Akhtar	
VK3ES	14.08	3	4	Akhtar	
VK3KK	14.14	3	3	Akhtar	
VK3SB	14.	4	5	Akhtar	
VK3BM	14.06	5	5	Akhtar	
VK4JP	14.140	4	7	L. Fuller	
VK4KH		4	5-7		Wallen.
				Wells	
VK4IU	14.14	5	5	Akhtar	
VK5TR	14.25	4 5	4	Akhtar	
VK5CS	14.26	5	7		
VK6MW	14.13	- 5	6-8	Hegler	
VK6HB	14.13	4	5		
VK6HT	14.05	5	8	Akhtar	
VK7AB	14.00	4	6	Akhtar	
VK7LZ	14.29	4 5 4 3	5	Akhtar	

Most prominent last month among the Oceania stations were the K6's. The signal strength from this section of the world is very high, accounting for the large number being received.

K6OQM 29,000 5 8 Hegler
K6BNR 14.160 5 7.8 Lang, Jordan. Henderson. Wallen.

			Tele and the Des
			Fitzpatrick. Par-
			ker. Hegler. L.
			Fuller. Slaughter
	28.630		Hegler
K6PMC	14.170	5	8 L. Fuller
K6MZQ	14.175	5	9 L. Fuller
K6KKĈ	14.180	5	9 L. Fuller
K6PMC K6MZQ K6KKČ K61LW	14.200	5 5 5 5	9 L. Fuller
K6OQE	14.220	5	7-8 L. Fuller, Fitzpat-
_			rick, Lang
K6GAF	14.215	5	8 L. Fuller
K6LEJ	14.225	4	7 L. Fuller, Wallen
	14.160	5	7 Wallen
	14.120	5	6 Wallen
K6NZX	28.005	4	7 Fitzpatrick
K6OJI	14.155	4	8 Parker
	14.190	4	9 Parker
K6PLZ	14.180	4	8 Parker
	14.160	5	6-9 Parker, Lang
	14.160	4	7 Lang
K6FKN	14.220	5	6 Lang
VR6AY**	14.345	4-5	7-8 Hegler, Carling,
7 10111	1 110 15		Lendzioszek
ZL1GZ	28,200	4	6.8 L. Fuller
ZL3KZ	14.100	4	6 Henderson
W6NYD***	14.255	4	3 Parker, C. Fuller,
1101112	141000	•	Wallen, Fitzpat-
			rick
KA1CS	14.148	4-5	
KATOS	14.140	7 0	tar
KA1ME	14.260	5	7 Lang
KAIJM	14.05	3	3 Akhtar
KAIJP	14.25	3-4	5.6 Akhtar
KA2OV	14.270	4.5	7 Lang
KA7EF	14.—	5	6 Akhtar
PK1MJ	14	Š	6 Akhtar 4-5 Wood
From our	observer	s in	other lands, we have the

From our observers in oth following North American stations reported: 14.16 14.17 14.15 5 5 3 4 5 6 Akhtar Akhtar Akhtar

VP6FO		14.1	0 4	5	Akhtar	•		
Call	R	S	Observ.	Co	dl.	R	S	Obscrv.
WICND	5		Akhtar	W	4DSY	3	3	Akhtar
WICRW	5	5 5	Akhtar	W	4BAZ	4	5	Akhtar
WIFGO	3	3	Akhtar	W	5DLP	4	7	Sibbin
WIGLH	5	6	Akhtar	W	5FIY	3	4	Akhtar
W2ACB		5	Akhtar	W	5BUK	4	5	Akhtar
W2AZ	5	5	Akhtar	W	5EHM	5	6	Akhtar
W2CRI	3	3	Akhtar	W	6GYH	3	3	Akhtar
W2BYP	3	6	Akhtar		6NCW	5	7	Sibbin
W2IKV	5	9	Akhtar		6NBD	5	8	Sibbin
W2IXY	4	4	Akhtar		'60I	4	7	Sibbin
W3GQD	5	7	Akhtar		6LYY	4	7	Sibbin
W3PT	3	3	Akhtar		'8GLY	5	6	Akhtar
W3DO	3	4	Akhtar		8MUR	3	3	Akhtar
W3EŐZ	3 5 5	6	Akhtar		'8NJT	3	5	Akhtar
W3AFG	5	7	Sibbin		78CNO	4	7	Sibbin
W3BSM	4	7	Sibbin		9LFX	3	3	Akhtar
W4BNR	5	8	Akhtar		9CJP	5	6	Akhtar
WAAIT	3	3	Akhtar	W	790I	4	4	Akhtar

"W9AM is a portable on board the S.S. California, bound for the Antarctic. Operator contacts W9EYW in afternoons. Power of the transmitter is only 15 watts. Position of the ship on January 1st was off the northern coast of Brazil.

"It has been learned that, a short time ago, VR6.1V was off the air, but it is believed that they have not verturned, although they have not been heard here for over a month. However, the reports for December idicate that they are being beard in some parts of the country.

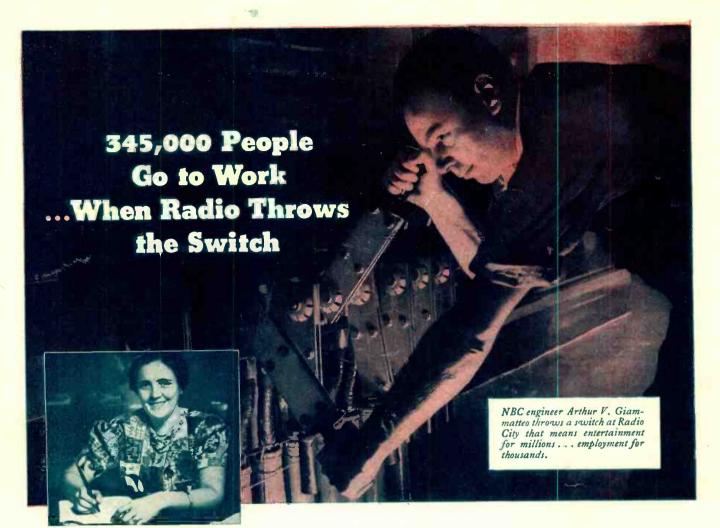
""VSNYD is, at the present writing, working portable in the K6 call area. The QRA is: 1001 18th Avenue. Honolulu, Hawaii.

Well, this closes up our department for another month. Don't forget to send along a picture of your listening post. Best 73's and lots of Dx.

Special Features for HAMS and FANS in next issue.

Index to Advertisers

	The state of the s	
Al	A C Radio Laboratories .69 ied Engineering Institute .68 ied Radio Corporation .67 ierican Radio Institute .68 perite Co. .67	5
Ba Bl Br Bu	B B 698—70	1 12 19 12 13
Ca Ca Ca Ca Ca	C	77 18 17 18 13 14
D:	taprint Company	97 88
Fo	F r Sale Ads69	8
G	ld Shield Products693. 69	97
H H H H	mmarlund Manufacturing Co., Inc	77 95 79 er 90
I:	structograph Company	88 04
К	K orrol Radio Products Co6 M	87
N N	cIntosh Elec. Corp	92 84 89 "
	N	
THILL	ational Company, Inc. Inside Back Covational Plans Institute 6 ational Radio Institute 6 ational Schools 6 cew York YMCA Schools 6	ver 197 141 188 188
F	ar-Metal Products Corp6	591
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	adio Amateur Course	544 589 ver 596 689 581 585
1	olar Mfg. Corp prayberry Academy of Radio upreme Publications	
	echnifax eleplex Co riplett Electrical Instrument Co urner Co., The	695 689 675 684
	U Universal Microphone Co., Ltd.,	704
	Van Nostrand, D., Co	673
	Ward, Montgomery, & Co	682 692 691
	X X. L. Radio Laboratories	. 684


(While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this index.)

NC-44

If you judge receivers on the basis of performance per dollar of cost, you will find the National NC-44 an outstanding value. This seven-tube superhet covers from 550 KC to 30 MC in four ranges. The full-vision dial is carefully calibrated in frequency. A straight-line-frequency main condenser is used in conjunction with a separate band spread condenser, and both have inertiatype tuning. A CW oscillator is provided. The performance of the NC-44 is remarkably fine, even at ten meters where so many receivers are unsatisfactory. The Net Price is only \$49.50, including tubes, speaker and built-in power supply.

The RCA Victor Family has many longtime members. Above is Group Supervisor Bessie Purnell, who has been with Victor for 32 of its 40 years.

8,000 American radio operators on ships and ashore handle hundreds of thousands of radio messages that help business and guard lives and property. Leaders in these activities are R.C.A. Communications, Inc., and Radiomarine Corporation of America, members of the family of RCA.

radio is entertainment, news, and education... the greatest show on earth. But to 345,000 workers and their families... a total of some 1,380,000 men, women and children... radio is even more than a show, it is a living. Where only a few years ago radio jobs were non-existent, now 700 odd radio stations and 500 and more factories create tens of thousands of jobs.

Radio a Boon to Thousands in Wholesale and Retail Businesses

About 25,000 are connected with wholesale establishments handling

radio merchandise. Retail radio merchants account for 56,000 and salesmen, service men, and others engaged in radio sales and service number 150,000.

For retailers and wholesalers as well as for the 19,000 members of its own organization, the Radio Corporation of America works aggressively to bring ever increasing prosperity by constantly improving the services radio gives the public. America has come to recognize the advantages in going "RCA ALL THE WAY." As a result... there is an ever richer field of opportunity for merchants who go RCA All The Way, too.

Listen to the "Magic Key of RCA" every Sunday, 2 to 3 P. M., E. S. T., on the NBC Blue Network.

RADIO CORPORATION OF AMERICA

PADIO CITY, N. Y.

RCA MANUFACTURING CO., INC.

RADIOMARINE CORPORATION OF AMERICA

*NATI

, INC. R.C.A. COMMUNICATIONS, INC.